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Importance of Deep Neural Network (DNN)

Object recognition from images

Speech recognition

Atari and Go games in reinforcement learning

Generating abstract art
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Motivation behind compactifying DNN

Challenges in Deep Learning

Billions of parameters for a practical Deep Network

Deep learning requires a lot of memory and computing power

This makes it difficult to run a pre-trained Neural Network on
low-cost/low-power devices

Existing methods to reduce over parametrization

Shallow network

Pruning: Compress a pre-trained network

Quantizing network parameters to several levels

Authors’ solution: Binarized Neural Network (BNN) !!
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Binarized Neural Network: Training Neural Networks
with Weights and Activations Constrained to +1 or −1

Published in NIPS 2016

Authors: Matthieu Courbariaux, Itay Hubara, Daniel
Soudry, Ran-El-Yaniv, Yoshua Bengio
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Basic architecture of DNN
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Basics of NN: Forward Propagation

Inputs

a0 ∈ Rd
W1,b1 W2,b2

Hidden layer 1

σ

σ

σ

σ

Hidden layer 2

σ

σ

σ

σ

Output

aact1 aact2 aact3 ∈ RD

aact1 = σ(s1)

= σ(a0.W1 + b1)

aact2 = σ(s2)

= σ(aact1 .W2 + b2)

Output, aact3 = S(aact2 ),

where S is Softmax and

S(aact2 (i)) =
aact2 (i)∑
i a

act
2 (i)
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Basics of NN: Loss functions

Inputs

a0 ∈ Rd
W1,b1 W2,b2

Hidden layer 1

σ

σ

σ

σ

Hidden layer 2

σ

σ

σ

σ

Output

aact1 aact2 aact3 ∈ RD

Output at final layer L : aact3

Target output: atrue3

Calculate Cost function C

For MSE loss,

C =
1

D

D∑
i=1

(aact3 (i)− atrue3 (i))2

For D class classification, Cross
entropy loss,

C =

D∑
c=1

−atrue3 (c)log(aact3 (c))
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Basics of NN: Back Propagation

Inputs

a0 ∈ Rd
W1,b1 W2,b2

Hidden layer 1

σ

σ

σ

σ

Hidden layer 2

σ

σ

σ

σ

Output

aact1 aact2 aact3 ∈ RD

If θti represents ith parameter
of a DNN at time instant t,
then the gradient of cost
function C wrt parameter θti
is given by

gti =
∂C

∂θti

The general update equation
for θti at time instant t is

θt+1
i = θti − η.gti

where η is step size
eg. Stochastic Gradient
Descent (SGD), Adam
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Architecture of BNN

How is it different from DNN?
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First layer in train-time

a0(2) ∈ R

a0(1) ∈ R

a0(0) ∈ R

ab1

w
b

1
(2
)
=
±1

wb1(1) = ±1

w
b
1 (0)

=
±
1

Deterministic Binarization
function to binarize weights and
activations.

xb = Sign(x) =

{
+1 x ≥ 0

−1 x < 0

Lets denote binarized weight
wb

1 = Sign(w1)

Save binary weights wb
0,w

b
1,w

b
2

in binary variables along with
real weights w0,w1,w2

For SGD to work, the variables
over which we optimize must be
floats.
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First layer in train-time

a0(2) ∈ R

a0(1) ∈ R

a0(0) ∈ R

ab1

w
b

1
(2
)
=
±1

wb1(1) = ±1

w
b
1 (0)

=
±
1

Sign serves the role of
nonlinearity σ

ab1 = Sign(wb1(0)a0(0)

+ wb1(1)a0(1) + wb1(2)a0(2))

= ±1

Therefore excluding first layer,
all other layer inputs are
binarized
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Other than first layer

abk(2) = +1

abk(1) = +1

abk(0) = −1

abk+1

w
b
k+

1
(2
)
=
+
1

wbk+1(1) = −1

w
b
k+

1 (0)
=
+
1

For k = 1, 2

abk+1 = Sign(+1 ∗ (−1)

− 1 ∗ (1) + 1 ∗ (1)) = −1

Weights and activations are
binary, So no arithmetic
multiplication is required
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BNN during train-time

abk

Wk+1

Sign

Wb
k+1

× abk+1Sign

The real weight matrix Wk and is converted to binarized weight matrix Wb
k.
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BNN during run-time

abk

Wb
k+1

× abk+1Sign

Use the trained binarized weights during run-time

It will not speed up training much, but after training we can discard real
variables, keep binary weights resulting in less memory consumption and less
computation of pre-trained BNN at run-time
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Algorithm for training BNN

In comparison with algo. for training DNN
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Algorithm1 : Computing parameter gradients

Require:

A minibatch of inputs and targets (a0,a∗)
previous weights Wt

previous Batch Normalization parameters θt

weight initialization coefficient γw
previous learning rate ηt

Ensure:

Updated weights Wt+1

Updated Batch Normalization parameters θt+1

Updated learning rate ηt+1

Binarized Neural Network
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Forward propagation for DNN

for k = 1 to L do

sk ←−Wka
act
k−1

ak ←− BatchNorm(sk, θk)
if k < L then

aactk ←− σ(ak)
end if

end for

sk ←−W1ak−1

ŝk ←−
sk − µk√
σ2
k + ε

(2)

ak ←− γkŝk + βk (3)

aactk ←− σ(ak)

where

µk = E(sk)

σ2
k = V ar(sk)
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Forward propagation for DNN

for k = 1 to L do

sk ←−Wka
act
k−1

ak ←− BatchNorm(sk, γk, βk)
if k < L then

aactk ←− σ(ak)
end if

end for

Inputs in minibatch of size m

Inputs in one batch
a0,0,a

act
0,1 , . . .a

act
0,m

Parameters to be learned at kth

layer are γk, βk

Consider the ith input of the
batch aact0,i but for ease of
representation let’s remove i.
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Forward propagation for BNN

W b
1 ←− Binarize(W1)

s1 ←−Wb
1a0

a1 ←− BatchNorm(s1, γ1, β1)
ab1 ←− Sign(a1)

for k = 2 to L do
W b
k ←− Binarize(Wk)

sk ←−Wb
ka
b
k−1

ak ←− BatchNorm(sk, γk, βk)
if k < L then

abk ←− Sign(ak)
end if

end for
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Computing parameter gradients at kth layer of DNN

Aim for back prop: To update parameter Wk with ∂C
∂Wk

∂C

∂Wk
=
∂C

∂sk
.
∂sk
∂Wk

=
∂C

∂sk
.aactk−1

Calculate ∂C
∂aact

k
at kth layer

Other than final layer aactk = σ(ak). From this,

∂C

∂ak,i
=

∂C

∂aactk,i
.
∂aactk,i
∂ak,i

=
∂C

∂aactk,i
.σ′

Other than final layer
∂aact

k,i

∂ak,i
= σ′

BackBatchNorm

∂C
∂ak,i

γk, βk, sk,i

∂C
∂sk,i

, ∂C∂γk ,
∂C
∂βk
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Back Propagation of DNN

Compute ∂C
∂aL

for k = L to 1 do

if k < L then
∂C
∂ak,i

←− ∂C
∂aact

k,i
◦ σ′

end if

( ∂C
∂sk,i

, ∂C∂γk ,
∂C
∂βk

)←− BackBatchNorm( ∂C
∂ak,i

, γk, βk, sk,i)

∂C
∂aact

(k−1),i

←− ∂C
∂sk,i

.Wk

∂C
∂Wk

←− ∂C
∂sk,i

T .aactk−1

end for
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Accumulating the parameter gradients: DNN

λ is the learning rate decay factor

for k = 1 to L do

γt+1
k ←− Update(γtk, η, ∂C∂γk )

βt+1
k ←− Update(βtk, η, ∂C∂βk

)

Wt+1
k ←− Update(W t

k, γkη,
∂C
∂Wk

)

ηt+1 ←− ληt

end for
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Accumulating the parameter gradients: BNN

λ is the learning rate decay factor

for k = 1 to L do

γt+1
k ←− Update(γtk, η, ∂C∂γk )

βt+1
k ←− Update(βtk, η, ∂C∂βk

)

Wt+1
k ←− Update(W t

k, γkη,
∂C
∂Wk

)

Wt+1
k ←− Clip(Update(W t

k, γkη,
∂C
∂Wb

k

),−1, 1)

ηt+1 ←− ληt

end for

Why is Clip required?

The real valued weights otherwise would grow very large without any impact
on the binary weights
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Computing parameter gradients: kth layer of BNN

To calculate ∂C
∂Wb

k

, we need ∂C
∂sk,i

and hence ∂C
∂ak,i

BackBatchNorm

∂C
∂ak,i

γk, βk, sk,i

∂C
∂sk,i

, ∂C∂γk ,
∂C
∂βk

Calculate ∂C
∂ab

k

at kth layer

Other than final layer abk = Sign(ak). From this,

∂C

∂ak,i
=

∂C

∂abk,i
.
∂abk,i
∂ak,i

=
∂C

∂abk,i
.Sign′

Other than final layer
∂ab

k,i

∂ak,i
= Sign′
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Difficulties of back prop through binarization

Derivative of Sign, i.e. Sign′ is almost zero everywhere which makes ∂C
∂ab

k,i

also almost zero everywhere.

Incompatible for backpropagation

Hinton introduced Straight Through Estimator (STE)

Binarized Neural Network
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Straight Through Estimator (STE)

Idea of STE is to simply treat the binarization function Sign as if it was a
clipped identity function (called hard tanh) during back propagation.

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0 = Sign
=hard tanh

∂C

∂ak,i
=

∂C

∂abk,i
.Sign′

=
∂C

∂abk,i
◦ 1(∣∣ ∂C

∂ab
k,i

∣∣≤1)
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Back propagation of BNN

Compute ∂C
∂aL

for k = L to 1 do

if k < L then

∂C
∂ak,i

= ∂C
∂ab

k,i

◦ 1(∣∣ ∂C

∂ab
k,i

∣∣≤1)
end if

( ∂C
∂sk,i

, ∂C∂γk ,
∂C
∂βk

)←− BackBatchNorm( ∂C
∂ak,i

, γk, βk, sk,i)

∂C
∂ab

(k−1),i

←− ∂C
∂sk,i

.Wb
k

∂C
∂Wb

k

←− ∂C
∂sk,i

T
.abk−1

end for
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Back prop through STE

∂C
∂ab

k−1

= ∂C
∂sk

.Wb
k

To previous layer

gf = ∂C
∂sk

T
.abk−1

Identity

gb =
∂C
∂sk

T
.abk−1

Mult and batchnorm

∂C
∂ab

k
Sign

∂C
∂ak

= ∂C
∂ab

k,i

◦ 1|ak,i|≤1

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0 = Sign
=hard tanh

gf : gradient used to update real var

gb: gradient used to see change in C for change in binary var
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First layer in Run-Time

At first layer, handle continuous valued inputs i.e. each element aact0 (i) of
aact0 as fixed point numbers with m bits of precision during run-time i.e.

aact0 (i) =

8∑
n=1

2n−1[aact0 (i)]n (1)

where [aact0 (i)]n implies nth bit of aact0 (i) when aact0 (i) is represented in 8-bit
precision.

So, at first layer,

s1 =

3∑
i=1

8∑
n=1

2n−1([aact0 (i)]n.wb1(i)) (2)
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Algorithm2: Running a BNN

Require: A vector of 8 bit input a0, the binary weight Wb, and the
BatchNorm parameters γ, β

Ensure: the MLP output aL

a1 ←− 0 First layer

for n = 1 to 8 do

a1 ←− a1 + 2n−1 ×Wb
1 ⊕ an0 Following (2)

end for
ab1 ←− Sign(BatchNorm(a1, θ1))

for k=2 to L-1 do Remaining hidden layers

ak ←−Wb
k ⊕ abk−1

abk ←− Sign(BatchNorm(ak, θk))

end for

aL ←−Wb
L ⊕ abL−1 Output layer

aL ←− BatchNorm(aL, θL)
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Simulation Results

Binarized Neural Network



33

Simulation Setup of BNN on MNIST

MNIST consists of a training set of size 60K and test set of 10K 28× 28
gray-scale images representing digits ranging from 0 to 9

BNN consists of

3 hidden layers
4096 binary units
L2-SVM output layer instead of softmax

Square Hinge loss is minimized with Adam

Exponentially decaying global learning rate

Batch-normalization with mini-batch size 100

Binarized Neural Network
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Simulation for MNIST

0 100 200 300 400
Epochs

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

MNIST

Training acc of DNN
Training acc of BNN
Test acc for DNN
Test acc of DNN binarized after training
Test acc for BNN

Figure: Comparison of Training and test accuracy of DNN and BNN on MNIST
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Simulation Setup of ConvNet on CIFAR10

CIFAR10 consists of a training set of size 50K and a test set of 10K 32× 32
colour images

ConvNet consists of the following architecture
(2× 128C3)−MP2 − (2× 256C3)−MP2 − (2× 512C3)−MP2 − (2×
1024FC)− 10SVM
where

C3 : 3× 3 Binary tanh convolution layer with batchnorm and nonlinearity
MP2: 2× 2 max pooling layer with batchnorm and nonlinearity
FC: Fully connected layer with batchnorm and nonlinearity
SM: Softmax output layer
SVM: L2-SVM output layer

Square Hinge loss is minimized with Adam

Exponentially decaying global learning rate

Batch-normalization with mini-batch size 50

Binarized Neural Network



36

Simulation for CIFAR10

0 20 40 60 80
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu
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CIFAR10

Train acc of CNN
Training acc of ConvNet
Test acc of CNN
Test acc of CNN binarized after training
Test acc of ConvNet

Figure: Comparison of Training and test accuracy of CNN and ConvNet on CIFAR10
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Advantages of BNN
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Advantages of BNN

Power efficient in forward pass:

Binary weights/activations reduces memory size (32 times compared to single
precision floating point (FP) DNN)

1 bit XNOR count instead of 32 bit FP multiply-accumulation operation

Exploiting filter repetitions

Faster on GPU at run time:

32 binary variables can be concatenated into 32-bit registers, thus 32 times
speed up on bit-wise operation

Binarized Neural Network
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In CPU

Number of trainable parameters Nparam

Number of bits used to save the parameters Nbits

MNIST

Network Nparam Nbits

DNN 36843530 36843530× 32 ≈ 1.17 Bn
BNN 36843550 36843550 ≈ 36 Mn

CIFAR10

Network Nparam Nbits

CNN 14033546 14033546× 32 ≈ 449 Mn
ConvNet 14033566 14033566 ≈ 14 Mn

Binarized Neural Network
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RBNN to close the accuracy gap between DNN and
BNN

Why RBNN?: Reason for the accuracy gap is large quantization error

Figure: (a) Large quantization error is caused by: Norm gap and Angular bias (b) Norm
gap is solved by minλ,b ||λb−w||2. However, it cannot reduce the angular bias θ i.e.
quantization error ||w sin θ||2 is still high for a higher θ.

RBNN to reduce the angular bias between the real weights wi and its
binarized value biw
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Possible area of extension: Approximate Computing (AC)

Strategies for AC:

Approximating circuits i.e. adders, multipliers and other logical circuits
Approximating storage eg. using precision scaling
Software level approximation: Using loop perforation, Skipping tasks and
memory accesses Accelerating NN
Approximating neural networks

Existing ways to Approximate NN and improve the accuracy further

Approximate deep network by shallow network, pruning, quantization,
binarization
Designing compact layers (eg. replacing 3× 3 convolution with 1× 1
convolution)
FP weights as linear combination of binary weight bases and using multiple
binary activations
Defining a new optimizer called BOP and use it instead of Adam

Idea for extension: Exploring ways to approximate a NN efficiently

Binarized Neural Network
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
nal layer we had,

s3 ←−W3a
act
2

ŝ3 ←−
s3 − µ3√
σ2
3 + ε

a3 ←− γ3ŝ3 + β3

aact3 ←− a3

Remembering inputs in a
minibatch of size m

µ3 =
1

m

m∑
i=1

s3,i

σ3 =
1

m

m∑
i=1

(s3,i − µ3)
2

Calculate ∂C
∂aact

3
at final layer

To update parameter W3 need to find ∂C
∂W3

∂C

∂W3
=
∂C

∂s3
.
∂s3
∂W3

=
∂C

∂s3
.aact2

Now

∂C

∂s3
=
∂C

∂ŝ3
.
∂ŝ3
∂s3

+
∂C

∂µ3
.
∂µ3

∂s3
+
∂C

∂σ2
3

.
∂σ2

3

∂s3

=
∂C

∂ŝ3
.

1√
σ2
3 + ε

+
∂C

∂µ3
.
1

m
+
∂C

∂σ2
3

.
1

m
2(s3 − µ3)

Next need to calculate ∂C
∂ŝ3

, ∂C
∂µ3

and ∂C
∂σ2

3
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
nal layer we had,

s3 ←−W3a
act
2

ŝ3 ←−
s3 − µ3√
σ2
3 + ε

a3 ←− γ3ŝ3 + β3

aact3 ←− a3

Remembering inputs in a
minibatch of size m

µ3 =
1

m

m∑
i=1

s3,i

σ3 =
1

m

m∑
i=1

(s3,i − µ3)
2

Calculate ∂C
∂aact

3
at final layer

To update parameter W3 need to find ∂C
∂W3

∂C

∂W3
=
∂C

∂s3
.
∂s3
∂W3

=
∂C

∂s3
.aact2

Now

∂C

∂s3
=
∂C

∂ŝ3
.
∂ŝ3
∂s3

+
∂C

∂µ3
.
∂µ3

∂s3
+
∂C

∂σ2
3

.
∂σ2

3

∂s3

=
∂C

∂ŝ3
.

1√
σ2
3 + ε

+
∂C

∂µ3
.
1

m
+
∂C

∂σ2
3

.
1

m
2(s3 − µ3)

Next need to calculate ∂C
∂ŝ3

, ∂C
∂µ3

and ∂C
∂σ2

3
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
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∂C

∂s3
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∂s3
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∂C

∂ŝ3
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∂ŝ3
∂s3
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∂C

∂µ3
.
∂µ3

∂s3
+
∂C

∂σ2
3
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∂σ2

3

∂s3

=
∂C

∂ŝ3
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1√
σ2
3 + ε

+
∂C

∂µ3
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1

m
+
∂C

∂σ2
3

.
1

m
2(s3 − µ3)

Next need to calculate ∂C
∂ŝ3
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∂µ3

and ∂C
∂σ2

3
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
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=
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∂s3
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∂ŝ3
.
∂ŝ3
∂s3
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∂µ3
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∂s3
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∂σ2
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∂σ2
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∂s3
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∂C

∂ŝ3
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1
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
nal layer we had,

s3 ←−W3a
act
2

ŝ3 ←−
s3 − µ3√
σ2
3 + ε

a3 ←− γ3ŝ3 + β3

aact3 ←− a3

Remembering inputs in a
minibatch of size m

µ3 =
1

m

m∑
i=1

s3,i

σ3 =
1

m

m∑
i=1

(s3,i − µ3)
2

Calculate ∂C
∂ŝ3

, ∂C
∂µ3

and ∂C
∂σ2

3

∂C

∂ŝ3
=
∂C

∂a3
.
∂a3
∂ŝ3

=
∂C

∂a3
.γ3

=
∂C

∂aact3

.γ3

∂C

∂σ2
3

=
m∑
i=1

∂C

∂ŝ3,i

∂ŝ3,i
∂σ2

3

=
m∑
i=1

∂C

∂ŝ3,i
(s3,i − µ3)

−1
2

(σ2
3 + ε)−3/2
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∂ŝ3

, ∂C
∂µ3

and ∂C
∂σ2

3

∂C

∂ŝ3
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
nal layer we had,

s3 ←−W3a
act
2

ŝ3 ←−
s3 − µ3√
σ2
3 + ε

a3 ←− γ3ŝ3 + β3

aact3 ←− a3

Remembering inputs in a
minibatch of size m

µ3 =
1

m

m∑
i=1

s3,i

σ3 =
1

m

m∑
i=1

(s3,i − µ3)
2

∂C

∂µ3
=

∂C

∂σ2
3

.
∂σ2

3

∂µ3
+

m∑
i=1

∂C

∂ŝ3,i
.
∂ŝ3,i
∂µ3

=
∂C

∂σ2
3

.
1

m

m∑
i=1

−2(s3,i − µ3) +

m∑
i=1

∂C

∂ŝ3,i
.
−1√
σ2
3 + ε
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Computing parameter gradients: last layer of DNN

In forward-prop, at fi-
nal layer we had,

s3 ←−W3a
act
2

ŝ3 ←−
s3 − µ3√
σ2
3 + ε

a3 ←− γ3ŝ3 + β3

aact3 ←− a3

Remembering inputs in a
minibatch of size m

µ3 =
1

m

m∑
i=1

s3,i

σ3 =
1

m

m∑
i=1

(s3,i − µ3)
2

Gradients of parameters γ3 and β3 can also be found as,

∂C

∂γ3
=

m∑
i=1

∂C

∂a3,i
.
∂a3,i
∂γ3

=

m∑
i=1

∂C

∂a3,i
.ŝ3,i

∂C

∂β3
=

m∑
i=1

∂C

∂a3,i
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Idea behind Shift based Calculations

AP2(x) = sign(x)× 2round(log2|x|)

7 ∗ 5 = 7 ∗AP2(5) = 7 ∗ 4 = 1.(22) + 1.(21) + 1.(20) ∗ 22

Two left shift of 1112 gives 111002 = 2810
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Algorithm3 : Shift based BatchNorm

Applicable to activation(x) over a minibatch

� represents left and � represents right binary shift

Require: values of x over a minibatch: B = {x1, x2, . . . xm} , parameters to
be learned γ, β

Ensure: {yi = BN(xi, γ, β)}

µB ←− 1
m

∑m
i=1 xi {mini batch mean}

C(xi)←− (xi − µB) {Centered input}

σ2
b ←− 1

m

∑m
i=1(C(xi)� AP2(C(xi))) {apx variance}

x̂i ←− C(xi)� AP2((
√
σ2
b + ε)−1) {normalize}

yi ←− AP2(γ)� x̂i {scale and shift}
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Algorithm4 for Update: Shift based Adamax

g2t indicates element-wise square gt ◦ gt
Default settings α = 2−10, 1− β1 = 2−3, 1− β2 = 2−10

βt1 and βt2 denotes β1 and β2 to the power t

Require: previous parameters θt−1 and their gradients gt and learning rate α

Ensure: Updated parameter θt

mt ←− β1.mt−1 + (1− β1).gt Momentum based GD

vt ←− max(β2.vt−1, |gt|) RMSprop with infinity norm

{Updated parameters}
θt ←− θt−1 − (α� (1− β1)).m̂� v−1t

Shift based Update combining momentum based GD and RMSprop
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Why to save both real and binary weights?

Binary weights and activations (eg. Wb
2, ab1) are used to compute the

parameter gradients

Real valued gradients are accumulated in real valued variables

Can BNN work by updating binary weights?

No, Real valued weights are likely required to be updated for SGD to
work because SGD explores the parameter space in small and noisy
steps, and the noise is averaged out by the stochastic gradient
contribution accumulated at each epoch

Binarized Neural Network
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Can BNN be used for tasks other than classification?

Yes, just the constraint functions change in SVM.

Softmax and cross entropy is majorly used for classification task in current
literature.

To avoid arithmetic calculation involving exponential, the authors took
L2SVM as final layer.

L2SVM calculates Square Hinge Loss (SHL) at output layer. Idea behind
minimizing SHL is maximizing the separation between the hyperplane and
the closest data point

To get an idea of SHL in binary classification (two classes
atrue3,i ∈ {+1,−1}) problem let’s consider, training data and its corresponding

label (ab2,i, a
true
3,i ), i = 1, 2, . . . k, ab2,i ∈ Rd, L2SVM learning consists of

min
w

1

2
wTw +

k∑
i=1

max(1−wTab2,i.a
true
3,i , 0)2,
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Talk about Binary-DetNet here

Fully connect architecture cannot learn in variable channel condition

Binarized Neural Network
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