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Overview

• Machine learning extracts valuable insights from data

• ML methods learn from data and minimize the reliance on classical estimation techniques

• Existing methods use CSI and the knowledge of self-interference

• Proposed: a two-stage DRL framework to solve RIS phase-shift, and beamformers and

transmit powers

• Strengths: learns directly from data without CSI, enables end-to-end learning, handles

complex non-linear environments, solves non-convex problems in one step, and flexibly

adapts to changing optimization objectives.

• Reduces signaling overhead
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RIS assisted Full Duplex Communication1
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1Nayak, Nancy, Sheetal Kalyani, and Himal A. Suraweera. ”A DRL approach for RIS-assisted full-duplex UL and DL transmission: Beamforming, phase shift and power

optimization.” IEEE Transactions on Wireless Communications (2024).
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System model

• Full-duplex (FD) setup, one FD BS, one Half duplex (HD) ULue, one HD DLue, and two

Reconfigurable Intelligent Surfaces (RIS) to facilitate communication when the users are

not in LoS with the BS

• BS has a uniform linear antenna (ULA) array with Mt transmit antenna elements and Mr

receive antenna elements

• ULue and DLue are single-antenna HD user

• Both the RISs are deployed as Uniform Planar Antenna (UPA)

• RIS1 and RIS2 has N1 = N1hN1v and N2 = N2hN2v reflecting elements

• The direct paths are blocked therefore has high pathloss

• User to user interference and inter-RIS interference is present, but paths have high pathloss

• DLue is HD, therefore it cannot transmit and receive at the same time
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System model

• The diagonal phase-shift matrices ΘU and ΘD of the two RISs are

ΘU = diag{Θ̄U} = diag{ϕU1 . . . ϕUN1
}, and

ΘD = diag{Θ̄D} = diag{ϕD1 . . . ϕDN2
}

(1)

with ϕn = e jθn

• sU denotes the transmit signal from the ULue

• pU > 0 denotes the transmit power of the ULue

• sD denotes the transmit signal of the BS

• pA > 0 denotes the transmit power of the BS
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System model

• The received signal at the BS is given by

yA = wRhAU
√
pUsU +wRFAIΘU fIU

√
pUsU +wRG

T
IAΘDgIU

√
pUsU

+wRHAAwT
√
pAsD︸ ︷︷ ︸

residual SI

+wRnA, (2)

• The signal received by the DLue is

yD = hDAwT
√
pAsD + gDIΘDGIAwT

√
pAsD + fDIΘUF

T
AIwT

√
pAsD

+ gDIΘDgIU
√
pUsU + fDIΘU fIU

√
pUsU︸ ︷︷ ︸

inter-RIS

+ g
√
pUsU︸ ︷︷ ︸

inter-user

+ nD . (3)

• Here transmit and receiver beamformers are denoted by wT and wR respectively

• Highlighted term leads to a very high level of interference if not canceled
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SINR and Data rate

• The SINR at the BS, γBS and the DL user, γDL are given by

γBS =
pU ||wR(hAU + FAIΘU fIU + GT

IAΘDgIU)||2

pA||wRHAAwT ||2 +w2
Rσ

2
A

, and

γDL =
pA||(hDA + gDIΘDGIAwT + fDIΘUF

T
AIwT )||2

pU ||(g + gDIΘDgIU + fDIΘU fIU)||2 + σ2
D

,

(4)

respectively.

• Accordingly, the data rate at the DLue and the BS are given by

rDL = log2 (1 + γDL) , and

rBS = log2 (1 + γBS) .
(5)
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Objective

The optimization problem is formulated as follows:

P1 : max
ΘD ,ΘU ,wT ,wR ,pA,pU

rBS + rDL

s.t. pmax
A ≥ pA ≥ 0, pmax

U ≥ pU ≥ 0,

|ϕn| = 1,1 ≤ n ≤ N1, 1 ≤ n ≤ N2

(6)

• Such optimization problems are typically relaxed and broken into smaller subproblems

• Either assumes negligible residual self-interference due to excellent SI mitigation technique

• Or assumes the presence of very little residual SI and then

• cancels the residual SI by using beamformers

• however, designing beamformers needs CSI

• What happens if the CSI is noisy and the residual SI is high/unknown?

• Proposed solution is two-stage Deep Reinforcement Learning (DRL) algorithm that

does not need any CSI
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DRL based two-stage algorithm

• Main challenge in the FD communication system: the self-interference (SI) imposed

by the transmit antenna on the receive antenna of the BS

• If SI mitigation scheme is not good, the residual SI has high power

• As the DRL agent learns from feedback, it is difficult for the DRL agent to learn

anything if the received signal has too much interference due to the high residual SI

• So first stage is to cancel a major part of the SI interference by sending a pilot

symbol (next slide)

• Second stage is to feed the data to an Intelligent agent which learns to predict the RIS

phaseshifts, beamformers and the transmit powers (agent: DRL algorithm)
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First stage: Least square-based SI-cancellation (LSSIC)

• The signal due to SI can be canceled with an estimate of wRHAAwT denoted by ĥ as

yA = wRhAU
√
pUsU +wRFAIΘU fIU

√
pUsU +wRG

T
IAΘDgIU

√
pUsU

+ (wRHAAwT − ĥ)
√
pAsD︸ ︷︷ ︸

residual SI

+wRnA. (7)

• At every epoch, the scalar ĥ is estimated by sending a pilot signal spD ∈ C at the BS from

the transmitter to the receiver antenna

• The corresponding received signal yp
A ∈ C at the receiver antenna of BS can be expressed

as

yp
A = wRHAAwT

√
pAs

p
D + vA, (8)

where vA ∈ C is the AWGN and the scalar wRHAAwT needs to be estimated.
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Contd. First stage: LSSIC

• To estimate wRHAAwT , we need to minimise the error J(h) where

J(h) = (yp
A −
√
pA s

p
D h)(yp

A −
√
pA s

p
D h),

= yp
A yp

A − 2
√
pA h y

p
A spD + pA h

2 spD spD .
(9)

where x̄ denotes the conjugate transpose of x .

• By taking the derivative of J(h) with respect to h and equating it to zero to obtain ĥ,

∂J(h)

∂h
= 0− 2

√
pA yp

A spD + 2pA h s
p
D spD = 0,

therefore, ĥ =
1
√
pA

(spDs
p
D)

−1 spD yp
A.

(10)

• The derived ĥ can be used in (7) to cancel a significant amount of SI.
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Second stage: DRL based method

• The DRL agent located at the BS initializes the phaseshift, beamformers and transmit

powers randomly, together called as actions

• Using these, the BS and ULue transmit and DLue and BS receives signals

• After receiving the signal at the BS, a significant amount of residual SI is cancelled2 using

a pilot signal (LSSIC); then the SINR at BS is obtained; used as observation or state

• The SINR at DLue (a scalar) is also calculated and the SINR is fed back to the agent to

be used in second stage as observation or state

• Note, if an estimate of HAA is already available at the BS, ĥ can be estimated using this

H̃AA; named as H̃AA based SI cancellation (HSIC)

2DLue is HD, so no SI for DLue
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Second stage: DRL based method

• Weighted sum of the corresponding data rates of these two SINRs are used as reward

• Now based on this feedback, the DRL agent predicts a different set of actions, according

to which again the signals are transmitted from BS and ULue, achieving a new pair of UL

and DL SINR (after LSSIC/HSIC at the first stage for UL) which takes the system to a

next state

• The quality of the beamformers learned by the DRL agent in the second stage depends on

the SI-cancelled signal from the first stage

• At the same time, with accurate learning of the beamformers, the SI-cancellation is also

better
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Formulating MDP

• An MDP has a state space S, an action space A, an initial distribution of space p(s{1})

and a stationary distribution for state transition that obeys Markov property i.e.,

p(s{t+1}|s{t}, a{t}) = p(s{t+1}|s{t}, a{t}, . . . , s{1}, a{1}) and a reward function

r : S ×A −→ R.

• The algorithm (deployed at BS) gives action a{t} based on the state s{t} generated at a

previous time step

• The environment reacts to these actions and gives back the SINRs as the

observations/states indicate how good the actions are

• Finally, the reward is calculated and fed as input to the learning agent

• The SINR observations, along with the actions at time step t give the state for time step

(t + 1).
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MDP for our system model

Figure 1: MDP formulation for RIS-based FD communication. 14



Contd. Second stage: DRL based method

• The job of the RL agent is to learn the policy π : S −→ A from the observations

corresponding to each of the actions while maximizing the return

r{t}(γ) =
∑∞

t′=t γ
t′−tr{t}(a{t}, s{t}) where γ ∈ [0, 1] is the discounting factor.

• The learning agent calculates the quality of action by using Q-function given by

Qπ(s, a) = E [r1(γ)|S1 = s,A1 = a;π] indicating how rewarding each action a is when

taken from a state s. At each timestep, the agent takes action which maximizes the

Q-value

• A better agent is an algorithm that approximates the Q-value well and predicts a good

action/policy

• The policy can be approximated by deep neural networks - actor-critic method namely

deep deterministic policy gradient (DDPG)
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DDPG

DDPG has four neural networks:

• An actor-network A parameterized by ωa which predicts the action a{t} based on the

current state s{t}

• A critic network C parameterized by ωc which computes Q(s{t}, a{t}) that is essentially

the quality of the action taken by actor-network A

• A target actor and a target critic networks for stable updates

• The agent encourages the actor-network to take better actions through its feedback

• The critic network C trains itself for better prediction by observing the rewards after

each action 3

• Critic network is a feed forward network

3For more details regarding how these networks are trained, please refer to the paper.
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Proposed actor network

Figure 2: The proposed action predictor network. SN represents sub-network
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Actor network

• The state for next time step s{t+1} takes the SINR at BS and DLue γ
{t}
BS and γ

{t}
DL , RIS

phases Θ̄
{t}
U , Θ̄

{t}
D , transmit and receive beamformers w

{t}
T and w

{t}
R and transmit powers

of the BS and ULue given by p
{t}
A and p

{t}
U

• Input to actor network x0 is the state

s{t} = [γ
{t−1}
BS , γ

{t−1}
DL , θ

{t−1}
11 , θ

{t−1}
12 , . . . , θ

{t−1}
1N1

, θ
{t−1}
21 , θ

{t−1}
22 , . . . , θ

{t−1}
2N2

,

real(w
{t−1}
t1 ,w

{t−1}
t2 , . . . ,w

{t−1}
tMt

), imag(w
{t−1}
t1 ,w

{t−1}
t2 , . . . ,w

{t−1}
tMt

),

real(w
{t−1}
r1 ,w

{t−1}
r2 , . . . ,w

{t−1}
rMr

), imag(w
{t−1}
r1 ,w

{t−1}
r2 , . . . ,w

{t−1}
rMr

), p
{t−1}
A , p

{t−1}
U ].

(11)

• The predicted action by the actor network for time step t is given by

a{t} = [θ
{t}
11 , θ

{t}
12 , . . . , θ

{t}
1N1

, θ
{t}
21 , θ

{t}
22 , . . . , θ

{t}
2N2

, real(w
{t}
T1 ,w

{t}
T2 , . . . ,w

{t}
TMt

),

imag(w
{t}
T1 ,w

{t}
T2 , . . . ,w

{t}
TMt

), real(w
{t}
R1 ,w

{t}
R2 , . . . ,w

{t}
RMr

),

imag(w
{t}
R1 ,w

{t}
R2 , . . . ,w

{t}
RMr

), p
{t}
A , p

{t}
U ].

(12)
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Predicted actions

• RIS phases: The feature xL is passed via the first two subnetworks, and the outputs are:

aΘ̄U
= tanh(WΘ̄U

xL + bΘ̄U
), and aΘ̄D

= tanh(WΘ̄D
xL + bΘ̄D

). (13)

The tanh is used to get the normalized actions between [−1,+1] are then shifted and

scaled to take values in [0, 2π].

• Beamformers: The in-phase and quadrature part of beamforming vectors can take any

value between [−1,+1], so the action corresponding to the in-phase and quadrature

components of the transmit beamforming vector 4

aMt ,I
= real(wT ) = tanh(W2,Mt ,I

ReLU(W1,Mt ,I
xL + b1,Mt ,I

) + b2,Mt ,I
) and

aMt ,Q
= imag(wT ) = tanh(W2,Mt ,Q

ReLU(W1,Mt ,Q
xL + b1,Mt ,Q

) + b2,Mt ,Q
),

4similar way for receive beamforming vectors
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Contd. Predicted actions

• Transmit powers: The output of the last two sub-networks are:

apU = tanh(wpUxL + bpU ), and apA = tanh(wpAxL + bpA), (14)

The output from sub-network is in the range [−1,+1] which is shifted and scaled to the

range [0,Pu] and [0,Pa] before using them in the environment

pa = (apA + 1)/2× Pa, and pu = (apU + 1)/2× Pu, (15)

where Pu and Pa are the maximum allowable transmit powers of the ULue and BS,

respectively.

• Addition of Gaussian noise to the action explores the action space well which gives faster

convergence
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Alternative solution PerfCSI-DRL using MRC-ZF - needs CSI

• Maximize sum of UL and DL SINR by maximizing the SNR towards reception

P2 : max
wT

rDL + rBS

s.t. ||wMRC
R HAAwT ||2 = 0, ||wT ||2 = 1,

(16)

where

wMRC
r =

(hAU + FAIΘU fIU + GT
IAΘDgIU)

H

||hAU + FAIΘU fIU + GT
IAΘDgIU ||

. (17)

• Note that the knowledge of every interferer is not available so gIU is not available
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Contd.

• We want to minimize the self-interference using Zero-Forcing. The precoder wT is in the

orthogonal complement space of wMRC
R HAA. The orthogonal projection onto the

orthogonal complement of the column space of wMRC
R HAA is given by5

Π⊥
H†

AAw
MRC†
R

= IMt
−H†

AAw
MRC†
R (wMRC

R HAAH
†
AAw

MRC†
R )−1wMRC

R HAA.

• The optimal solution for transmit beamforming is

wZF
T =

Π⊥
H†

AAw
MRC†
R

(hDA + gDIΘDGIA + fDIΘUF
T
AI )

†

||Π⊥
H†

AAw
MRC†
R

(hDA + gDIΘDGIA + fDIΘUF
T
AI )

†||
. (18)

• This work can be extended to multiple users, too, and precoding will help us to beamform

towards every user using the same antenna array.

5† represents conjugate transpose
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Simulation setup and results

• BS situated at (0, 0)

• No direct path from the BS to the UL and DL users

• To promote communication, two RISs are placed at (50, 22) and (50,−22)
• Static ULue and DLue at (50, 20) and (50,−20) respectively
• Maximum transmit power allowable at ULue and BS are pmax

U = 50 mW and pmax
A = 1 W

• For moving UEs, UEs move in a square area of 100 m2 with an average speed of 1m per

time step

• BS-RIS and the RIS-user channels have LOS, so modeled as Rician channel
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Contd.

• For example, the channel between RIS2 and DLue is given by

gDI =

√
βUI

1 + βUI

gLOS
DI +

√
1

1 + βUI

gNLOS
DI . (19)

where βUI is the Rician K -factor for the channels between RIS and users 6

• The other channels don’t have an LOS, so modeled as Rayleigh

• The path loss between two points with distance d is modeled as,

PL(fc , d)dB = −20 log10(4πfc/c)− 10α log(d/D0), (20)

where fc is the carrier frequency, D0 = 1 m, α is the path loss exponent.

6For more detail on how the channels are simulated in our setup, please refer to the paper
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Contd.

• The bandwidth where the system operates is 100 MHz, the noise power density is −174
dBm/Hz and the carrier frequency fc is 3.5 GHz.

• For the DRL agent, the discounting factor γ = 0.6, buffer size τ = 10000, and the

learning rates of actor and critic networks are 0.0001 and 0.001 respectively

• The experiment is run for initial 50 episodes and each episode has 1000 time steps. The

results are averaged over 4 independent runs

• The experiments are performed on an NVIDIA GeForce RTX 2080 Ti GPU

• The benchmark metrics used for studying the performance are UL and DL data rates with

the unit bits/sec/Hz.
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Our method and baseline competitor methods

• RandPSBF: Agent does not receive any SINR feedback from the environment; predict the

RIS phases, the beamformers, and transmit powers randomly

• OUPSBF: Makes use of the same DRL framework as ours, except for the action-noise

where it adds the Ornstein Uhlenbeck noise to the RIS phases and beamformer

• Proposed Minimum Signalling Feedback (MSF) DRL method with LSSIC and HSIC

(MSF-DRL-LSSIC and MSF-DRL-HSIC):

• The critic network and the feature extractor actor-network are feed-forward networks with

two layers, each with 100 neurons.

• At the beginning of every episode7, the MSF-DRL agent chooses actions randomly.

• MSF-DRL uses a Gaussian action noise with zero mean and linearly decaying standard

deviation (SD) with an initial SD of 0.3 decaying over 50 episodes.

7Episode is an independent game or sequence of states where the agent and environment interacts. It starts at an initial state and ends at a terminal state.
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Contd.

• PerfCSI-DRL and NoisCSI-DRL:

• A hypothetical experiment called “PerfCSI-DRL” to predict only the RIS phases where the

perfect CSI knowledge including residual SI is available to the agent therefore serves as

benchmark

• The agent calculates the beamformers based on the ZF and MMSE principle that needs

perfect CSI

• Periodically receive the CSI to calculate the beamformers and therefore incurs overhead

• CSI estimation methods may not be exact - NoisCSI-DRL

• MSF-DRL-LSSIC-pos: Along with previous actions, UL SINR and DL SINR, the past

positions for a window is also given to the MSF-DRL-LSSIC agent
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Comparison with static UE

Figure 3: Rate evolution during learning in the static UE scenario. MSF-DRL-LSSIC and HSIC learns

to predict and tries to reach the benchmark PerfCSI-DRL, performs much better than the case of

NoisCSI-DRL.
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Comparison with moving UE

Figure 4: Rate evolution during learning in the moving UE scenario. In moving UE case also, the

proposed method does not need any CSI and the knowledge of residual SI still performs better than

NoisCSI-DRL methods.
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Quantized MSF-DRL-LSSIC

• Every element of the real-valued phases is to be represented with just n bits so that

instead of a real (i.e., 64 bit) phase-shift value, only n (n << 64) bit information is

transmitted from the BS to the RIS

• Number of phase values that each of the passive elements can take is Q = 2n and are

given by p = 2π/2n × [0, . . . , 2n − 1] radians

• The architecture of the first two sub-networks for predicting RIS phases are now modified

so that instead of a single phase value, they predict the probabilities of picking that phase

value out of the possible values of discrete RIS phase angles of length Q = 2n

• The sub-network for predicting the phase-shift of RIS1 takes the feature xL as input and

passes it through N1 fully connected layers, each with 2n neurons, followed by a softmax

activation on each of the N1 outputs.
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Results with quantized phase MSF-DRL-LSSIC

Figure 5: Effect of quantization on phaseshifts of RISs on MSF(Q)-DRL methods. When n = 1, the

phase-shifts can take Q = 2n = 2 values {0, π}; for n = 0, the phase-shifts are fixed to 0 and only the

beamformers are learned.
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Reduced signalling with two-stage DRL algorithm

• Uses only one scalar feedback, i.e., the weighted sum of UL and DL SINR from the

environment instead of CSI which is in the form of Matrix for MIMO channels

• For our simulation setup i.e. 10 BS antenna elements and 36 RIS elements per RIS, the

number of instantaneous CSI that need to be fed to the algorithm is 813

• Proposed MSF-DRL method needs to transmit one pilot signal and needs to receive one

reward values in a single time step

Table 1: Proposed methods reduces signaling

Methods FLOPs Needs CSI, SI (#values) Signaling from BS to RIS (in bits)

PerfCSI-DRL 2.9× 104 Yes (813) 64N1 + 64N2 = 4608

MSF-DRL 3.3× 104 No (2) 64N1 + 64N2 = 4608

MSF(Q)-DRL 5.46× 104 No (2) 2N1 + 2N2 = 144
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Contributions

• The two-stage learning algorithm assumes the absence of a good SI mitigation

scheme and the costly CSI overhead but still performs almost as well as perfect

CSI-based semi-oracle DRL methods.

• To overcome the challenge of SI, a least square-based method is proposed when a good

estimate of SI is not present.

• The performances are shown in scenario with moving UEs as well

• We also propose a DRL framework that can learn quantized RIS phase shifts. The

quantized phase DRL method has 32 times lesser signaling than the continuous phase

DRL method with better convergence.
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Thank you!
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DDPG contd.

• To get stable, uncorrelated gradients for policy improvement, DDPG maintains a replay

buffer of finite size τ and samples the observations from the buffer in mini-batches to

update the parameters.

• At each timestep, the state s{i} and the action taken a{i} along with the reward obtained

r{i} and the next state s{i+1} is stored as an experience (s{i}, a{i}, r{i}, s{i+1}) to the

buffer B.
• DDPG also uses target networks with parameters ω̄a and ω̄c to avoid divergence in value

estimation

• For the critic network C(·|ωc) to compute the Q-value for each state action-pair, an

estimate of return for state si in each sample is computed as

y{i} = r{i} + γC(s{i+1},A(s{i+1}|ω̄a)|ω̄c). (21)
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DDPG contd.

• Once we observe a reward ri after taking an action ai , based on the estimate for return,

the mean squared Bellman error (MSBE) is computed as

L =
1

N

∑
i

(
y{i} −C(s{i}, a{i}|ωc)

)2

, (22)

where, C(·) is the predicted output value of critic network with parameter ωc for the state

s{i} and action a{i} before seeing the reward.

• Then, the critic network parameters are updated as

ωc ← ωc − ηc∇ωcL, (23)

where ηc ≪ 1 is the stepsize for the stochastic update.

• In our case the critic network is a fully connected network which gives a scalar output as

Q-value
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DDPG contd.

• For the actor-network, the update depends on both the gradient of action as well as the

improvement in Q-value. The final update for updating parameters of actor-network ωa is

given by

ωa ← ωa + ηa
1

N

∑
i

(
∇ωaA(s)∇aC(s, a)|a=A(s)

)
, (24)

where ηa ≪ 1 is the update stepsize.

• Finally, the target network parameters are updated in every U timestep to provide stable

value estimates using an exponentially weighted update as ω̄c ← λωc + (1− λ)ω̄c , and

ω̄a ← λωa + (1− λ)ω̄a, with λ≪ 1.
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