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Background and Motivation



Overview

SU/IoTs (S)

PU (P)

IoT devices in a Cognitive Radio Network

Assumptions:

1. Primary users P, secondary users S, |P| = P, |S| = S , and S ≫ P

2. SUs do not have any time-critical information for transmission

2



Overview

SU/IoTs (S)

PU (P)

IoT devices in a Cognitive Radio Network

Assumptions:

1. Primary users P, secondary users S, |P| = P, |S| = S , and S ≫ P

2. SUs do not have any time-critical information for transmission

2



Spectrum Sensing

• Locally sensed data at each SU1 may be degraded due to

1. Fading nature of the wireless channel

2. Hidden PUs

3. Shadowing

1Different robust sensing methods are Energy detectors, Waveform based techniques, Matched filters, Cyclo-stationary based sensing : Yucek, Tevfik, and Huseyin Arslan. ”A

survey of spectrum sensing algorithms for cognitive radio applications.” IEEE communications surveys & tutorials 11, no. 1 (2009): 116-130.
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Overview
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PU2

PU3

PU4

SU1

SU2

SU3

SU4
SU5

SU6SU7

SU8

SU9
SU10

SU/IoTs with better detection capability

Fusion Center

IoT devices in a Cognitive Radio Network

• SUs simultaneously try to acquire a free channel - collision and data loss

• Information from all the SUs can be fused to identify the state of the channels with high

confidence - Collaborative Spectrum Sensing
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Why Collaborative Spectrum Sensing?

1. Spatial placements of IoT devices

• perceive the occupancy state of the same channel differently

• dissimilar detection performance across IoT devices

2. Dense deployment

• at least one SU satisfies the SNR condition for correct detection
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Traditional CSS schemes:

• Locally sensed observations are combined in different ways.

• Example: AND 2, OR 3, Confidence Voting 4

• But cannot handle:

• Widely varying channel conditions of SUs

• Different detection capability of SUs from different vendors

2Visotsky, E., Kuffner, S. and Peterson, R., 2005, November. On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In First IEEE International

Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. (pp. 338-345). IEEE.

3Ghasemi, A. and Sousa, E.S., 2005, November. Collaborative spectrum sensing for opportunistic access in fading environments. In First IEEE International Symposium on New

Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. (pp. 131-136). IEEE.

4Lee, C.H. and Wolf, W., 2008, January. Energy efficient techniques for cooperative spectrum sensing in cognitive radios. In 2008 5th IEEE Consumer Communications and

Networking Conference (pp. 968-972). IEEE.
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Proposed method: Online Learning

• Assuming no prior knowledge about the detection performance of individual SUs, we

weigh the information from each SUs according to their relative performance in an

online fashion to arrive at final decision of the channel state

• Why Online Learning?

• Learns from streaming data

• Learns the quality of each device
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Leveraging Online Learning for

CSS



Combining observations in CSS

1. True state of cj at time step n is g(n) where gj(n) ∈ {0, 1} ∀cj ∈ P - ground truth

2. Observation oji (n) is made by the i th SU about the j th channel state at time step n

3. A weighted combination of observations O ∈ RP×S is taken to produce decision

f(n) ∈ [0, 1]P where fj(n) is the decision for state of cj
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Detection method at every SU/IoT device

• Channel detection method: Neyman-Pearson (NP) detector

• Let, H0 : x(n) = n0(n) and H1 : x(n) = s(n) + n0(n) where s(n) is transmitted signal from

BS and n0(n) is the noise

• Detect channel state of cj : eji (n) = (1/N)
∑N−1

s=0 x2[s] ⪋ ζ

• The detection hypothesis can be written as,

eji (n)

σ2
∼ χ2

N under H0 (1)

eji (n)

σ2
s + σ2

∼ χ2
N under H1 (2)

where σ2 is noise variance and σ2
s is signal variance
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Detection method at every SU/IoT device

• According to NP criterion, for a targeted Pfa, the threshold to detect a channel

ζ = σ2.Q−1
χ2
N
(Pfa) (3)

• The prediction of SU si about the channel cj

dji (n) = 1[eji (n)≥ζ] (4)

• Combining Hard decisions: when oji (n) = dji (n) and dji ∈ {0, 1} ∀i , j
• Combining Soft decisions: when oji (n) = eji (n) and eji (n) ∈ R+ ∀i , j
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General framework for online learning for CSS

w1(n)

w2(n)

w3(n)

w4(n)
w5(n)

w6(n)w7(n)

w8(n)

w9(n)

w10(n)

FC

SU/IoTs (S)

Weights on the IoT devices based on their performances

• Initial weight wi (0).

• Weights of the SUs for the PU-channels are stored in W(n) ∈ RP×S

• Normalized weight pji (n) =
wji (n)
S∑

i=1

wji (n)

.
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General framework for online learning for CSS

PU1

PU2

PU3

PU4

o1

o2

o3

o4
o5

o6
o7

o8

o9o10

FC

PU busy

PU free

SU/IoTs (S)

Combining observations

• Let, g(n) = [busy, free, free, busy]

• Combined information f̃j(n) =
S∑

i=1

pji (n)oji (n)

• FC’s decision fj(n) is busy if f̃j(n) ≥ γj else free
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General framework for online learning for CSS

PU1

PU2

PU3

PU4

SU1

SU2

SU3

SU4
SU5

SU6SU7

SU8

SU9

SU10 FC

PU busy

PU free

SU/IoTs (S)

SU transmits

Making a correct final decision

• If f(n) is free, then SUs transmit and if f(n) is busy then they do not

• Let, f(n) = [busy, free, free, busy]

• If f(n) = g(n) then Correct decision else Wrong decision
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General framework for online learning for CSS

PU1

PU2

PU3

PU4

SU1

SU2

SU3

SU4
SU5

SU6SU7

SU8

SU9

SU10 FC

PU busy

PU free

SU/IoTs (S)

SU transmits

Making a wrong final decision: SU and PU collision

• g(n) = [busy, free, free, busy], and let, f(n) = [free, free, free, busy]

• Collision between PU1 and SU10
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General framework for online learning for CSS

PU1

PU2

PU3

PU4

SU1

SU2

SU3

SU4
SU5

SU6SU7

SU8

SU9

SU10 FC

PU busy

PU free

SU/IoTs (S)

SU transmits

Making a wrong final decision: missed idle slots

• g(n) = [busy, free, free, busy], and let, f(n) = [busy, free, busy, busy]

• SU1 missed the opportunity to transmit using the channel of PU3

• SUs get to know the ground truth gj(n) only if they transmit

• Approximate ground truth (AGT) when fj(n) is busy and SU doesn’t transmit
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Hedge5 inspired online Learning for CSS

• Find instantaneous loss at SUs using AGT lji (n) for (si , cj) pair

lji (n) = L(dji (n), gj(n)) = |dji (n)− gj(n)| ∈ {0, 1}

• The loss is used to update the weights of (si , cj) as wji (n + 1)← wji (n)β
lji (n) where

β ∈ (0, 1] is the learning parameter

5Freund, Yoav, and Robert E. Schapire. ”A decision-theoretic generalization of on-line learning and an application to boosting.” Journal of computer and system sciences 55, no.

1 (1997): 119-139.
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Hedge hard combining (Hed-HC) the observations

• Final decision: fj(n) =
S∑

i=1

pji (n)oji (n) = busy if f̃j(n) ≥ γj else free

• How to pick γj for Hedge Hard Combining (HC)?

• Individual decisions oji are either 0 or 1, so γj is set to be 0.5

• When all the SUs have equal normalized weight i.e., ≈ 1
S , Hedge-HC behaves same as CV

• Benefit: SUs need to send only one bit of information to the FC - reduces the overhead
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Hedge soft combining (Hed-SC) the observations

• Final decision: fj(n) =
S∑

i=1

pji (n)oji (n) = busy if f̃j(n) ≥ γj else free

• How to pick γj for Hed-SC?

• Combining this soft information with Hedge

f̃j(n) =
S∑

i=1

pji (n)η
2
jiψ(n), (5)

where ψ(n) ∼ χ2
N , η

2
ji = σ2 under H0 and η2ji = σ2 + σ2

sji under H1

• χ2
N is a special case of Gamma(N2 , 2), so f̃j(n) =

S∑
i=1

pji (n)ψ̃(n) where

ψ̃(n) ∼ Gamma
(
N
2 , 2η

2
ji

)

18
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Hedge soft combining (Hed-SC) the observations

• Weighted sum of gamma random variables follows Confluent Lauricella distribution

• Thresholds are computationally expensive to calculate online at every step

• Approximate f̃j(n) under H0 with another gamma distribution Γ(kj , θj)

• By equating first and second moments we get,

kj =
N

2
S∑

i=1

p2ji

, and θj = 2σ2
S∑

i=1

p2ji

• Given a Pfa, the threshold is calculated by

γj = Q−1
Γ(kj ,θj )

(Pfa) (6)

• Benefit: FC can exploit the granularity of the observation to arrive at better decision

19
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p2ji

, and θj = 2σ2
S∑

i=1

p2ji

• Given a Pfa, the threshold is calculated by

γj = Q−1
Γ(kj ,θj )

(Pfa) (6)

• Benefit: FC can exploit the granularity of the observation to arrive at better decision
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Reducing false alarm using FDR

control



Controlling False Alarm

• CSS with multiple PU as multiple hypothesis testing task 6

• Suppose, each of the P channels has a probability of false alarm Pfa

• The probability of getting at least one false positive, termed as family wise error rate

FWER = 1− (1− Pfa)
P ≈ P × Pfa (7)

• FWER increases with increase in number of channels P

• Controlling FWER at a level α implies each of the P tests should have Pfa = α/P -

conservative because this lowers the statistical detection power

• The procedure for controlling FWER reduces the probability of getting false positive at the

cost of increasing the probability of getting false negative (more collision)

6Shaffer, Juliet Popper. ”Multiple hypothesis testing.” Annual review of psychology 46, no. 1 (1995): 561-584.

20



Controlling False Alarm

• CSS with multiple PU as multiple hypothesis testing task 6

• Suppose, each of the P channels has a probability of false alarm Pfa

• The probability of getting at least one false positive, termed as family wise error rate

FWER = 1− (1− Pfa)
P ≈ P × Pfa (7)

• FWER increases with increase in number of channels P

• Controlling FWER at a level α implies each of the P tests should have Pfa = α/P -

conservative because this lowers the statistical detection power

• The procedure for controlling FWER reduces the probability of getting false positive at the

cost of increasing the probability of getting false negative (more collision)

6Shaffer, Juliet Popper. ”Multiple hypothesis testing.” Annual review of psychology 46, no. 1 (1995): 561-584.

20



Controlling False Alarm

• CSS with multiple PU as multiple hypothesis testing task 6

• Suppose, each of the P channels has a probability of false alarm Pfa

• The probability of getting at least one false positive, termed as family wise error rate

FWER = 1− (1− Pfa)
P ≈ P × Pfa (7)

• FWER increases with increase in number of channels P

• Controlling FWER at a level α implies each of the P tests should have Pfa = α/P -

conservative because this lowers the statistical detection power

• The procedure for controlling FWER reduces the probability of getting false positive at the

cost of increasing the probability of getting false negative (more collision)

6Shaffer, Juliet Popper. ”Multiple hypothesis testing.” Annual review of psychology 46, no. 1 (1995): 561-584.

20



Controlling False Alarm

• CSS with multiple PU as multiple hypothesis testing task 6

• Suppose, each of the P channels has a probability of false alarm Pfa

• The probability of getting at least one false positive, termed as family wise error rate

FWER = 1− (1− Pfa)
P ≈ P × Pfa (7)

• FWER increases with increase in number of channels P

• Controlling FWER at a level α implies each of the P tests should have Pfa = α/P -

conservative because this lowers the statistical detection power

• The procedure for controlling FWER reduces the probability of getting false positive at the

cost of increasing the probability of getting false negative (more collision)

6Shaffer, Juliet Popper. ”Multiple hypothesis testing.” Annual review of psychology 46, no. 1 (1995): 561-584.

20



Controlling False Alarm

• CSS with multiple PU as multiple hypothesis testing task 6

• Suppose, each of the P channels has a probability of false alarm Pfa

• The probability of getting at least one false positive, termed as family wise error rate

FWER = 1− (1− Pfa)
P ≈ P × Pfa (7)

• FWER increases with increase in number of channels P

• Controlling FWER at a level α implies each of the P tests should have Pfa = α/P -

conservative because this lowers the statistical detection power

• The procedure for controlling FWER reduces the probability of getting false positive at the

cost of increasing the probability of getting false negative (more collision)

6Shaffer, Juliet Popper. ”Multiple hypothesis testing.” Annual review of psychology 46, no. 1 (1995): 561-584.

20



Controlling False Alarm

• CSS with multiple PU as multiple hypothesis testing task 6

• Suppose, each of the P channels has a probability of false alarm Pfa

• The probability of getting at least one false positive, termed as family wise error rate

FWER = 1− (1− Pfa)
P ≈ P × Pfa (7)

• FWER increases with increase in number of channels P

• Controlling FWER at a level α implies each of the P tests should have Pfa = α/P -

conservative because this lowers the statistical detection power

• The procedure for controlling FWER reduces the probability of getting false positive at the

cost of increasing the probability of getting false negative (more collision)

6Shaffer, Juliet Popper. ”Multiple hypothesis testing.” Annual review of psychology 46, no. 1 (1995): 561-584.

20



False Discovery Rate7 for FWER control

• How to control FWER to a low level and still avoid collision?

• Assume, R of total P channels are declared as occupied among which V of them are

falsely declared as occupied.

• Then the false discovery rate (FDR) is defined as,

FDR = E

[
V

R

]
(8)

• FDR controls the number of false discoveries made only among the total

discoveries - less conservative

• BH procedure can be used by FC to make the final decision about the state of the channel

- helps to reduce the fraction of missed slots

7Benjamini, Yoav, and Yosef Hochberg. ”Controlling the false discovery rate: a practical and powerful approach to multiple testing.” Journal of the Royal statistical society: series

B (Methodological) 57, no. 1 (1995): 289-300.
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CSS in non-stationary

environment



Handling non-stationary environment

• Algorithm should be able to discount 8 the past observations in favor of more recent

observations

• Reduces the importance of distant past observations using an exponential weighing scheme

• Update for dHedge:

wji (n + 1)← wji (n)
γβlji (n). (9)

where 0 ≤ γ ≤ 1 is the discounting factor

8Raj, Vishnu, and Sheetal Kalyani. ”An aggregating strategy for shifting experts in discrete sequence prediction.” arXiv preprint arXiv:1708.01744 (2017).
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Experimental validation



Three different CRN configurations

1. Good signal condition (GSC): An area of 1× 1 km2 with 10 SUs. Approximately 78% of

the SUs have Pd > 0.95.

2. Medium signal condition (MSC): An area of 8× 8 km2 with 50 SUs. Approximately 55%

of the SUs have Pd > 0.95.

3. Bad signal condition (BSC): An area of 8× 8 km2 with 10 SUs. Just about 1% of the SUs

have Pd > 0.95.

23



Metrics

Fraction of SU collision =

N∑
n=1

∑
s∈S

I[s incured a collision at n]

N∑
n=1

∑
s∈S

I[s attempts a transmission at n]

Fraction of PU collision =

N∑
n=1

∑
j

I[collision observed in cj at n]

N∑
n=1

∑
j

I[cj is busy at n]

24



Metrics

Fraction of missed slots =

N∑
n=1

∑
j

I[Incurred a false alarm at cj ]

N∑
n=1

∑
j

I[cj is idle at n]

Number of sensing averaged over all SUs in the network

• comes down when SUs are selectively deactivated to sense the channel

• indicator of energy spent in sensing
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Results on SU collision, PU collision and missed slots in BSC

0 0.2 0.4 0.6 0.8 1

·104

0.2

0.3

0.4

0.5

Timesteps

F
ra
ct
io
n
of

S
U
co
lli
si
on

(1.1) Fraction of SU packet collision

0 0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

Timesteps

F
ra
ct
io
n
of

m
is
se
d
sl
ot
s

(1.2) Fraction of missed idle slots

0 0.2 0.4 0.6 0.8 1

·104

0.2

0.4

0.6

0.8

1

Timesteps

F
ra
ct
io
n
of

P
U
co
lli
si
on

OR

(1.3) Observed interference at PU

Figure 1: Comparison of proposed Hedge-HC, Hedge-SC and Perceptron-SC with traditional OR,

AND and CV for BSC 26
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Hard Combining vs Soft Combining
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Figure 2: ROC at medium signal condition

• Pd and Pfa are empirically calculated at fusion center

• ROC for “Hed-SC” lies above “Hed-HC”
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Results on BH method for FDR control in MSC

0 0.2 0.4 0.6 0.8 1

·104

10−4

10−3

10−2

10−1

Timesteps

F
ra
ct
io
n
of

S
U
co
lli
si
on

(3.1) SU packet collision

0 0.2 0.4 0.6 0.8 1

·104

10−2

10−1

Timesteps
F
ra
ct
io
n
of

m
is
se
d
sl
ot
s

(3.2) Fraction of missed idle slots

0 0.2 0.4 0.6 0.8 1

·104

10−4

10−3

Timesteps

F
ra
ct
io
n
of

P
U
co
lli
si
on

Hedge-SC

(3.3) Observed interference at PU

Figure 3: BH method for FDR control for MSC
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Results on BH method for FDR control in BSC
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Figure 4: BH method for FDR control for BSC
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Weight evolution
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Figure 5: Weight evolution in MSC for stationary channel condition

• Selectively deactivate SUs whose observation are not important
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Saving energy by selectively enabling devices
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Figure 6: Average number of sensing per SU per timestep
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Selective deactivation of poor-performing detectors
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Figure 7: Comparison of metrics with selective deactivation of poor-performing detectors in MSC
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Selective deactivation of poor-performing detectors
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Results on non-stationary environment
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Figure 9: Both PUs and SUs are mobile in Medium Signal Condition
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Conclusion

We presented an online learning framework for collaborative spectrum sensing.

1. It learns to combine the information based on past performances

2. Extends the battery-life

3. Can be easily scaled to networks experiencing wide variety of signal conditions and large

number of devices

4. Handles situations where devices drop-out of the network randomly

5. Equally applicable for non-stationary environments
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Detection method at every SU/IoT device

• Channel detection method: Neyman-Pearson (NP) detector

• Let, H0 : x(n) = n0(n) and H1 : x(n) = s(n) + n0(n) where s(n) is transmitted signal from

BS and n0(n) is the noise

• The statistics eji (n) = (1/N)
∑N−1

s=0 x2[s], sum of square of N IID Gaussian RVs, is

compared with a threshold η at each time-step n to detect channel state of cj

• The detection hypothesis can be written as,

eji (n)

σ2
∼ χ2

N under H0 (10)

eji (n)

σ2
s + σ2

∼ χ2
N under H1 (11)

where σ2 is noise variance and σ2
s is signal variance
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Detection method at every SU/IoT device

• Probability of false alarm

Pfa = P

(
eji (n)

σ2
>

ζ

σ2
;H0

)
. (12)

• According to NP criterion, for a targeted Pfa, the threshold to detect a channel

ζ = σ2.Q−1
χ2
N
(Pfa) (13)

where N is the number of samples used for energy detector

• The prediction of SU si about the channel cj at n
th time step is dji (n) given by,

dji (n) = 1[eji (n)≥ζ] (14)

• When dji ∈ {0, 1} is sent from SUs to FC, each element in observation matrix is

oji (n) = dji (n) ∀i , j - Hard decision combining

• When soft information is sent by SUs to FC then each element in observation matrix is

oji (n) = eji (n) ∈ R ∀i , j - Soft decision combining
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Hedge soft combining (Hed-SC) the observations

• Approximate f̃j(n) with another gamma distribution Γ(kj , θj) using the moment matching

technique where f̃j(n) can be written as

f̃j(n) =
S∑

i=1

pji (n)ψ̃(n) =
S∑

i=1

Γ

(
N

2
, 2pji (n)η

2
ji

)
, (15)

• By equating first moment

kj × θj =
S∑

i=1

N

2
× 2pji (n)σ

2 = Nσ2 as
S∑

i=1

pi = 1 (16)

• By equating the variance,

kj × θ2j =
S∑

i=1

N

2

(
2pjiσ

2
)2
. (17)
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Hedge soft combining the observations

• Comparing (16) and (17), we get θj = 2σ2
S∑

i=1

p2ji and kj =
N

2
S∑

i=1

p2
ji

• Given a probability of false alarm requirement, the threshold for detection at time instant

n, γj(n), for channel cj can be calculated from,

γj = Q−1
Γ(kj ,θj )

(Pfa) (18)

• Final decision on j th channel cj : fj(n) = busy if f̃j(n) ≥ γj else free
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Controlling the FDR at α with BH procedure

• Considering f̃j(n) as the observed combined soft information at FC, the corresponding

p-value Pj is

Pj = QΓ(kj ,θj )(f̃j(n)). (19)

• Order p-values: P(1) ≤ P(2) ≤ ... ≤ P(P)

• H(j): the null hypothesis corresponding to P(j) ∀j ∈ P
• Let k be the largest j for which,

P(j) ≤
j

P
α (20)

then reject all H(j) for j = 1, 2, ..., k

• BH procedure helps to reduce the fraction of missed slots for transmission

• Switch between traditional Hedge and BH procedure to attain best of both the worlds
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Perceptron Inspired Online Learning

• A version of perceptron which fits into the need for CSS

• Algorithm maintains a weight vector wj of length S for each channel cj

• At FC, the combined expert decision

f̃j(n) =
S∑

i=1

wji (n)oji (n). (21)

is compared with a threshold γpj

• The perceptron algorithm in the CSS setting learns the weights wji (n) and the intercept

γpj of the hyperplane

S∑
i=1

wji (n)oji (n)− γpj = 0. (22)
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Perceptron Inspired Online Learning

• Whenever an expert si makes a mistake when the actual channel state cj is busy, the

weight of that expert is updated as,

wji (n + 1)← wji (n) + ρ · oji (n). (23)

• When the actual channel state cj is idle and an expert si makes a mistake, the weight of

that expert is updated as,

wji (n + 1)← wji (n)− ρ · oji (n). (24)
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Perceptron Inspired Online Learning

• As the observations come from χ2
N or Γ distribution, the combined expert decision

f̃j(n) ∼
S∑

i=1

wji (n)Γ
(
N
2 , 2η

2
)
is a weighted sum of Γ distributions.

f̃j(n) ∼
S∑

i=1

wji (n)Γ

(
N

2
, 2η2

)
∼

S∑
i=1

Γ

(
N

2
, 2wji (n)η

2

)
(25)

• Closed form expression or proper approximation for the above distribution is not available -

a histogram fitting method

• Let H be the normalized histogram of samples drawn from (25), for a predefined Pfa,

γpj = Q−1
H (Pfa). (26)
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Perceptron Inspired Online Learning

• Hyperplane (22) can be written as,

S∑
i=1

wji (n)o
′
ji (n) = 0 (27)

where

o′
ji (n) = oji (n)−

γpj
S × wji (n)

. (28)

• So the update equations are given as

On false positive: wji (n + 1)← wji (n) + ρ · o′
ji (n) (29)

and

On false negative: wji (n + 1)← wji (n)− ρ · o′
ji (n). (30)
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dPerceptron

• Update for dPerceptron

• Channel cj is busy, but si makes a mistake:

wji (n + 1)← γwji (n) + ρ · oji (n). (31)

• Channel cj is idle, but si makes a mistake:

wji (n + 1)← γwji (n)− ρ · oji (n) (32)
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Deep Learning based approach

• Enough data - train a fully connected network offline - use the trained network to predict

the channel occupancy state.

• Input: A flattened vector of O(n)

• Output: A sigmoid layer of dimension P × 1 whose j th element denotes the probability of

j th channel being occupied

• Loss function: Mean Square Error between the output vector of the deep network and the

actual GT of the channels

Parameter Value

Number of hidden layers 3

Number of neurons in each hidden layer 2PS

Activation tanh

Learning rate of batch wise GD 0.001

Batch size 20

Table 1: Parameters for offline training
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Traffic model

The PU traffic is modeled using the Hyper-exponential distribution (HED) as suggested in

[5506438]. Both ON time and OFF time of PU are modelled using an M component HED

random variable X as

f HEDX =
M∑
k=1

pk fYk
(x),

where each Yk is exponentially distributed with rate λk , and pk is the weight given to k th

component with
M∑
k=1

pk = 1. The simulation parameters used are given in Table 2.

Parameter Value Parameter Value

Number of PUs 10 Pfa 0.05

Working frequency of PUs 6 GHz Packet loss 0.05

PU Transmit Power 0 dB Hedge HC: β 0.88

No.of HED components 3 Hedge SC: β 0.99

λ (0, 500] Perceptron: ρ 0.80

Table 2: Parameter used for simulation
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