# Understanding Learning Dynamics of Binary Neural Networks via Information Bottleneck

Seminar for the requirement of EE6999 and EE7999

February 4, 2024

Indian Institute of Technology Madras, India

#### **Outline**

1. Information Bottleneck (IB) Principle

2. Learning dynamics of Deep Neural Networks

3. Learning dynamics of Binary Neural Networks

Information Bottleneck (IB)

**Principle** 

#### **Information Bottleneck**

- Information Bottleneck method is information theoretic principle for extracting relevant information that an input RV  $X \in \mathcal{X}$  contains about an output RV  $Y \in \mathcal{Y}$
- Given the joint distribution p(X, Y), the relevant information is I(X, Y)
- X and Y are dependent, so mutual information I(X; Y) > 0
- ullet Optimal representation of X would capture relevant features of X for predicting Y, and compress irrelevant features

#### **Minimal Sufficient Statistics**

- In supervised learning, we are interested in a good representation S(X) which is the relevant part of X with respect to Y
- In the DNN setting, S(X) is the partition of X that has all the information X has on Y, i.e., I(S(X);Y)=I(X;Y)
- The optimal representation is best characterized by minimal sufficient statistics, the coarsest partition of input space X wrt Y
- Finding the **minimal sufficient statistics** T(X) is:

$$T(X) = \underset{S(X):I(S(X);Y)=I(X;Y)}{\arg\min} I(S(X);X). \tag{1}$$

Exact minimal sufficient statistics may not exist

# Minimal Sufficient Statistics (Contd.)

- Relaxed optimization problem is to find the approximate minimal sufficient statistics that captures as much I(X; Y) as possible
- ullet Trade-off between the compression of X and the prediction of Y
- Pass the information that X provides about Y through a **bottleneck**<sup>1</sup> formed by the compact summaries in  $\mathcal{T}(X)$
- $\bullet$  Finding the compressed representation T of X becomes minimizing the below functional:

$$\mathcal{L} = I(T; X) - \beta I(T; Y), \tag{2}$$

where  $\beta$  is the Lagrange multiplier

• Here  $\beta = \infty$  implies no compression and vice versa

<sup>&</sup>lt;sup>1</sup>Tishby, Naftali, Fernando C. Pereira, and William Bialek. "The information bottleneck method." arXiv preprint physics/0004057 (2000).

### **IB** principle for Deep Neural Networks

 Structure of the DNN is reviewed as a Markov cascade of intermediate representations between input and output layers<sup>2</sup>

$$Y \to X \to T_1 \to T_2 \to \cdots \to T_j \to T_i \to \cdots \to \hat{Y}$$
 (3)

• Let the set of hidden layers in a DNN is defined by  $\mathcal{T}$  and  $\mathcal{T}_i$  denotes  $i^{th}$  hidden layer and i > j, then according to data processing inequality (DPI)

$$I(Y;X) \ge I(Y;T_1) \ge I(Y;T_2) \ge \dots I(Y;T_j) \ge I(Y;T_i) \dots \ge I(Y,\hat{Y}) \tag{4}$$

• Achieving equality is possible iff each layer is a sufficient statistic of its input

<sup>&</sup>lt;sup>2</sup>Tishby, Naftali, and Noga Zaslavsky. "Deep learning and the information bottleneck principle." In 2015 ieee information theory workshop (itw), pp. 1-5. IEEE, 2015.

**Learning dynamics of Deep** 

**Neural Networks** 

#### Information plane dynamics of DNNs

- Information Plane: The plane of the Mutual Information values that each layer preserves on the input and output variables
- Goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction
- By using tanh activation, Deep networks are shown to undergo two distinct phases<sup>3</sup>
  - Empirical Risk Minimization phase where the stochastic gradient descent (SGD) algorithm generates high valued gradients, the loss rapidly decreases
  - Compression phase where the efficient representation of the intermediate layers are learned higher variance gradient

<sup>&</sup>lt;sup>3</sup>Shwartz-Ziv, Ravid, and Naftali Tishby. "Opening the black box of deep neural networks via information." arXiv preprint arXiv:1703.00810 (2017).

# Information plane dynamics of DNNs (Contd.)



**Figure 1:** Information plane dynamics and neural nonlinearities. A. Tanh, binning; B. ReLU, binning; C. Tanh, KDE; D. ReLU, KDE

### Information plane dynamics of DNNs (Contd.)

- Information plane trajectory is a function of the neural nonlinearities<sup>4</sup>:
  - double-sided saturating nonlinearities like tanh yield a compression phase
  - no evident causal connection between compression and generalization

<sup>&</sup>lt;sup>4</sup>Saxe, Andrew M., Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D. Tracey, and David D. Cox. "On the information bottleneck theory of deep learning." Journal of Statistical Mechanics: Theory and Experiment 2019, no. 12 (2019): 124020.

# Does compression really depend on double saturating non-linearity?



Figure 2: Activations considered

• We do not observe a compression phase for double saturating sign-swish activation

#### Information plane behaviour for DNN



Figure 3: Top: Training data, bottom: test data; Left: Tanh, Middle: Hard-tanh, Right: Sign-swish

### Information plane behaviour for DNN



Figure 3: Top: Loss, bottom: gradient; Left: Tanh, Middle: Hard-tanh, Right: Sign-swish

### Information plane behaviour for DNN (Contd.)

- Decrease in I(T; Y) is prominent after 1000 epochs for both the activations tanh and hard-tanh
- Increase in validation loss around 1000 epochs overfitting
- In sign-swish, over-fitting is less
- DNNs first increase both I(T; X) and I(T; Y) followed by a separate representation compression (RC) phase where I(T; X) decreases
- Representation compression phase is slow process in DNN, and often happens once loss starts saturating
- When we use methods like early stopping, practical models may never get to the compression phase
- The compression phase of DNNs is seen as generalization and this is not achievable unless models are trained well beyond loss saturation and are at the risk of overfitting

**Learning dynamics of Binary** 

**Neural Networks** 

#### Information bottleneck for BNN

- ullet The intermediate representation T of a real-valued neural network can have high precision and hence can accommodate any shorter representation of the input information flows without any hindrance
- I(T; Y) needs to be kept at a certain level for correct prediction of Y
- Representation capability of T is limited due to binary activation in BNNs free flow of complete information is suppressed
- It is of immense interest to study the learning dynamics of BNNs

#### **Binary Neural Networks**

• The binary activation function  $g(\cdot)$ :

$$g(x) = \begin{cases} -1 & ; x \le 0, \\ +1 & ; x > 0, \end{cases}$$
 (5)

• backpropagation requires differentiable activation functions



Figure 4: Activations considered in BNN

# Information plane behaviour for BNN



Figure 5: Left: STE activation, Middle: Approximate sign activation, Right: Swish sign activation

#### Information plane behaviour for BNN



**Figure 5:** Top: Loss, bottom: gradient; Left: STE activation, Middle: Approximate sign activation, Right: Swish sign activation

# Information plane behaviour for BNN (Contd.)

- BNNs start with a low value for I(T;X) and does not show an explicit compression phase
- The behavior of high gradient variance in DNN in each epoch is similar to the noise<sup>5</sup> and this facilitates the generalization in DNNs
- BNNs do not have high gradient variance phase, yet they generalize well
- High variance in gradients alone cannot characterize the representation compression (RC) phase
- No explicit RC phase for BNNs
- BNNs generalize over the dataset rather than extracting features that may be specific for individual samples
- During training they spend time on improving task-relevant mutual information I(T; Y)

<sup>&</sup>lt;sup>5</sup>Shwartz-Ziv, Ravid, and Naftali Tishby. "Opening the black box of deep neural networks via information." arXiv preprint arXiv:1703.00810 (2017).

#### Conclusion

- Even though the DNNs have a separate empirical risk minimization and representation compression phases, in BNNs, both these phases are simultaneous
- BNNs have a less expressive capacity, they tend to find efficient hidden representations concurrently with label fitting
- Verified across different activation functions

Thank you!

#### Our study

In this experiment, we study DNN with three activation functions tanh, hard-tanh and sign-swish. The activation hard-tanh is given by

$$g(x) = \begin{cases} -1 & ; x \le -1 \\ x & ; -1 \le x \le +1, \\ +1 & ; x \ge 1. \end{cases}$$
 (6)

We take another double saturating non-linearity, sign-swish, given by

$$g(x) = 2\sigma(\beta x) \left(1 + \beta x \left(1 - \sigma(\beta x)\right)\right) - 1. \tag{7}$$

where  $\sigma$  is the sigmoid function,  $\beta$  is a tunable parameter.

#### **BNN** activations

Straight-Through-Estimator (STE): STE-sign is used in [courbariaux2016binarized] to train BNNs using backpropagation. The backward pass for STE is defined as,

$$\frac{d}{dx}g(x) = \begin{cases} 1 & ; -1 \le x \le +1, \\ 0 & ; \text{otherwise.} \end{cases}$$
 (8)

Approximate sign: [liu2018bi] introduced Approximate sign (approx-sign) function as a tight approximation to the derivative of the non-differentiable sign function with respect to activation. The backward pass for approximate sign activation function is defined as,

$$\frac{d}{dx}g(x) = \begin{cases} 2 - 2|x| & ; -1 \le x \le +1, \\ 0 & ; \text{otherwise.} \end{cases}$$
 (9)

### **BNN** activations (contd.)

Swish sign: [darabiregularized] proposed swish sign activation as another close approximation for the sign function. The backward pass for swish sign activation function is defined as,

$$\frac{d}{dx}g(x) = \frac{\beta\left(2 - \beta\tanh\left(\frac{\beta x}{2}\right)\right)}{1 + \cosh\left(\beta x\right)}.$$
 (10)