FIRST LINE OF DEFENSE: A ROBUST FIRST LAYER MITIGATES ADVERSARIAL ATTACKS
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* Most of the samples are misclassified and the decision regions are scattered
with baseline, while ANF has sparse decision boundaries, making it more
robust toward adversarial attacks.

ANF

Increases the non-linearity in the ar-
chitecture by combining the three op-
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e Adversarial Training methods are
computationally intensive
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* Enhancing Native Robustness

—Regularizing high-frequency filters

— Adversarial Noise Filter (ANF) -

the modified first layer inhibits the
passage of adversarial noise
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* More filters - better generalization

* Maxpool downsamples - and reduce
the impact of adversarial noise

implicitly filters out the adversarial
noise and reduces its propagation to
other layers.
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Figt;re 4: FFT of feature maps for unstructuréd noise at input and after first layer
of ResNet20 - baseline (left) vs. ANF (right).
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Figure 1: ANF as the first layer in ResNet20

e ANF attenuates high-frequency components, lower intensity for high-
frequency components

Measure of denoising - mPSNR
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Baseline X X X 2722 91.26 160.42 22.66
Typel X X 4537 8835 158.18 65.65 * The ANF has smoothed out the feature maps compared to the baseline in-
Type2 X v X 2991 091.16 160.23 24.23 dicating that it can also mitigate adversarial noise within these maps
Type3d X v VvV 4992 89.72 156.63 61.79
Iyped v X X 4554 85.68 156.08 59.08 K Findin
Iyped v X v 51.71 80.99 153.06 78.17 Results €y d 55
Iype6 v v X 40.12 86.64 157.47 29.80 Arch TGSM PCD  AA  Coroe Clemn . . .
Type7 < < / 5993 83.09  151.62 89.92 ma ac°1he modified peak signal-to-noise
R Ne20 with CIFARLG ratio (mPSNR) values at the output
Baseline 4286 27.03 1241 7332 91.26 of the ANF are higher
Table 1: mPSNR in ResNet20 for CIFAR10. For column K, vincreases the ker- AN s ap a1 0 Gos ° Lhedecision regions with ANF have
nel size from 3 x 3 to 15 x 15; for column F, vincreases filters from 16 to 256; for AT [1] 4993 4634 3647 — 7031 better margins
column M, /introduces a 5 X 5 maxpool operation. ResNet20 with CIFAR100 e The visualized loss surfaces are
Baseline 12.28 3.83 1.01 3493 65.34 smoother
ANF 26.8 2643 21.58 48.13 54.86 o ngh frequency components o f
[1] 172 1224 511 — 58.19 -
Why dOES ANF WOI'k? EfficientNet-B0 with CIFAR10 noise are more attenuated
. _ _ - . i&;\s{;ﬁne gigg 2222 ;liii ;lﬁfl)g zgﬁ * Not only structured adversarial
Visualization of the Decision Regions ] 783 5068 535 . so1s  Noise, architectures incorporating
ResNet50 with TmageNet ANF exhibit better denoising in un-
Baseline with AT 4236 26.17 1.05 64.37 StTUCtured GaUSSian nOise Compared
ANF with AT 55.09 55.46 52.95 - 61.67 to baseline architectures
AT [1] 36 37 24.32 - 58.09

e ANF smooths feature maps, sug-
gesting its ability to mitigate adver-
sarial noise

Table 2: Comparison of ANF with base-
line under adversarial attacks.
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(a) Baseline (b) ANF
Figure 2: Decision regions for ResNet20 with adversarial samples
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