
Rotate the ReLU to Implicitly Sparsify Deep Networks

Ph.D. Seminar II

Presented by: Nancy Nayak

Supervisor: Dr. Sheetal Kalyani

February 4, 2024

Indian Institute of Technology Madras, India



Outline

1. Necessity for energy-efficient Deep Networks

2. Rotated ReLU activation

3. Intrinsic structural sparsity

4. Insights on Results, Discussion, Scalability, and Robustness

1



Necessity for energy-efficient

Deep Networks



Deep Learning has revolutionized lot of fields

• Deep learning in Vision, AlphaGo, Language, Speech, Self-driving cars, AlphaFold

• Performance is improving rapidly to surpass human performance1

Figure 1: Imagenet entries. Blue: Deep Learning models

• Recent addition WideResNet (2016) and Vision Transformers (2020)

• For resource-constrained, energy-efficient green networks, the major concerns regarding

the deployable network are (i) Model size and (ii) Computation

1Source: https://www.implantology.or.kr/articles/xml/RvNO/

2

https://www.implantology.or.kr/articles/xml/RvNO/


Bigger models consumes more power

• Model size is the number of parameters - every year model size increases by 10×
• Models with bigger memory is expensive - more memory movement consumes more power

• Two approaches

• Efficient algorithm - reduce number of parameters and number of activations

• Efficient hardware - select important features or quantize model parameters after training

3



High computation for heavier tasks

(2.1) A whole trunk of workstation for

Self-driving cars2
(2.2) Compute: 1920

CPUs and 280 GPUs

($3000 electricity bill per

game of AlphaGo3)

(2.3) Compute: 16 TPUv3s (128 TPU

v3 cores) for few weeks4 for AlphaFold

2Source: https://www.autonomousvehicletechnologyexpo.com/en/

3Source: https://futureoflife.org/recent-news/alphago-and-ai-progress/

4Source: https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
4

https://www.autonomousvehicletechnologyexpo.com/en/
https://futureoflife.org/recent-news/alphago-and-ai-progress/
https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


How to get Greener Deep Networks?

• Existing compression techniques

• Quantization, Binarization, Transfer learning, Low-rank approximation, Pruning connection,
weight, and channels with sparsification using

• Regularization - reduces memory size

• Group sparsity based regularization - reduces both memory size and computation

• We propose a new activation Rotated ReLU that intrinsically structurally sparsifies deep

networks

5



Rotated ReLU activation



ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Output of l th hidden layer

hl+1 = σ(F(hl ;Wl)) where σ is ReLU

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

σ
(x
)
=

m
ax
(0
,x
)

ReLU activation

6



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Increase the degree of freedom of ReLU by

rotating the linear part

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

σ
(x
;b
)

b ≥ 0

RReLU activation σ(x ; b) = bmax(0, x)

7



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Increase the degree of freedom of ReLU by

rotating the linear part

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

σ
(x
;b
)

b < 0

RReLU activation σ(x ; b) = bmax(0, x)

7



Rotated ReLU in a DNN

Input

h0

W1 W2

b4

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Now, the output of the l th layer is

hl+1 = σ(xl ;bl) = bl max(0, xl) where

xl = F(hl ;Wl)

• W1 =


w11
1 w12

1 w13
1

w21
1 w22

1 w23
1

w31
1 w32

1 w33
1

w41
1 w42

1 w43
1

 and

W2 =


w11
2 w12

2 w13
2 w14

2

w21
2 w22

2 w23
2 w24

2

w31
2 w32

2 w33
2 w34

2

w41
2 w42

2 w43
2 w44

2


• Highlighted connections are unimportant if

b4 → 0

7



Rotated ReLU in a CNN

8



Rotated ReLU in a CNN

8



Rotated ReLU in a CNN

• if b3l → 0, then they corresponding filters are unimportant
8



Rotated ReLU in a CNN5

• If the output of RReLU at the l th layer has cl+1 channels and n entries of bl are

insignificant, then only (cl+1 − n) channels remain significant

• Saving in Memory:

• Original model size: cl+1clk
2 (l th layer) and cl+2cl+1k

2 ((l + 1)th layer)

• Sparse model size: (cl+1 − n)clk
2 (l th layer) and cl+2(cl+1 − n)k2 ((l + 1)th layer)

• Saving in Computation:

• Original model FLOP: 2clk
2h̄w

l+1h̄
h
l+1cl+1 (l th layer) and 2cl+1k

2h̄w
l+2h̄

h
l+2cl+2 ((l + 1)th layer)

• Sparse model FLOP: 2clk
2h̄w

l+1h̄
h
l+1(cl+1 − n) (l th layer) and 2(cl+1 − n)k2h̄w

l+2h̄
h
l+2cl+2

((l + 1)th layer)

5Wl ∈ Rcl+1×cl×k×k
is the filter for the lth layer of a 2D CNN; k is the dimension of the filter; cl and cl+1 represent the number of input and output channels at the lth

layer, respectively; (h̄wl , h̄hl ) and (hwl+1, h
h
l+1) are spatial dimensions (width, height) of the input and the output

9



Intrinsic structural sparsity



RReLU in ResNet architectures

• When the input hl is fed to the l th layer of a residual unit with ReLU, the output:

hl+2 = max(0,hl + γl+1Conv(max(0,γlConv(hl ;Wl) + βl︸ ︷︷ ︸
xl = F(hl ;Wl ,γl ,βl )

)

︸ ︷︷ ︸
hl+1

;Wl+1) + βl+1),

(1)

where γl and βl are the batchnorm scaling and shifting parameters6, respectively.

• The same with RReLU:

hl+2 = bl+1 max(0,hl + γl+1Conv(bl max(0,γlConv(hl ;Wl) + βl︸ ︷︷ ︸
xl = F(hl ;Wl ,γl ,βl )

)

︸ ︷︷ ︸
hl+1

;Wl+1) + βl+1),

(2)

where bl is the RReLU slopes.

• RReLU enhances the representation power corresponding to every filter7

6Ioffe, Sergey, and Christian Szegedy. ”Batch normalization: Accelerating deep network training by reducing internal covariate shift.” In International conference on machine

learning, pp. 448-456. pmlr, 2015.

7overall representation power of the network remains same 10



Enhanced Filter Representation with γl and bl

• When elements of bl reach zero, the elements of γl approach zero too

• When some elements of bl don’t approach zero, the corresponding elements of γl take

wide range of values

• Intrinsically, many filters becomes unnecessary and the corresponding RReLU slopes

become insignificant without any regularization on bl

11



Can γl alone sparsify?

• γl alone cannot achieve the same level of sparsity as RReLU as γl are initialized with

positive values and do not fully explore negative values

• Negative values of γl may take the output features to map to the negative part of ReLU

activation - dying ReLU problem - not recommended

• Network-slimming8 utilizes the L1 norm on γl ,∀l ∈ L, to force each of the elements of γl

to approach zero

• With RReLU, while minimizing L1 norm on bl , every element of bl is compelled to

adopt smaller values, but b
{i}
l γ

{i}
l remains unconstrained

8Liu, Zhuang, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. ”Learning efficient convolutional networks through network slimming.” In

Proceedings of the IEEE international conference on computer vision, pp. 2736-2744. 2017.

12



Insights on Results, Discussion,

Scalability, and Robustness



Initialization of RReLU slopes

• Wl is initialized with Kaiming He9 initialization

method

• The RReLU slopes bl for all l ∈ L are initialized

with a truncated Gaussian Mixture Model (GMM)

with a mean of {+1,−1} and a variance of 3

• ResNets for both ReLU and RReLU are trained for

1200 epochs Figure 2: Initial Distribution of RReLU

slopes (bl)

9He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.” In Proceedings of the

IEEE international conference on computer vision, pp. 1026-1034. 2015.

13



Revised baselines - strong competitors

Dataset CIFAR-10

Architecture ResNet-20 ResNet-56 ResNet-

110-pre

ResNet-

164-pre

WRN-40-4

Acc ReLU (200 epochs) 91.25 93.03 93.63 94.58 95.47

Acc ReLU (1200 epochs) 93.12 94.45 95.33 95.51 96.18

Table 1: More training improves the validation accuracy, consistent with the findings of Nakkiran et

al.10

10Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. ”Deep double descent: Where bigger models and more data hurt.” Journal of

Statistical Mechanics: Theory and Experiment 2021, no. 12 (2021): 124003.

14



Distribution of bl

(3.1) ResNet-20 (3.2) ResNet-56 (3.3) ResNet-110-pre (3.4) ResNet-164-pre

(3.5) ResNet-20 (3.6) ResNet-56 (3.7) ResNet-110-pre (3.8) ResNet-164-pre

Figure 3: Distribution of bl with CIFAR-10 (top) and CIFAR-100 (bottom). ResNet-N denotes ResNet

of depth N. 15



Intrinsic sparsity with RReLU

Dataset CIFAR-10

Architecture ResNet-

20

ResNet-

56

ResNet-

110-pre

ResNet-

164-pre

WRN-

40-4

Acc ReLU (more training) 93.12 94.45 95.33 95.51 96.18

#Params ReLU 0.27 0.85 1.7 1.7 8.9

#FLOPs ReLU 81 251 505 478 2605

Filters pruned (%) 3.86 8.78 6.05 45.34 43.36

Acc RReLU (post-pruning) 92.86 94.11 95.11 95.10 96.01

#Params RReLU 0.25 0.78 1.59 0.92 3.26

#FLOPs RReLU 78 206 454 307 1245

Table 2: Performance of RReLU in terms of accuracy, number of trainable parameters, and

computation power (in FLOPs) when trained from scratch. The number of parameters and FLOPs are

in Millions (Mn).

16



Comparing performance of RReLU with Liu et al.11

(4.1) ResNet-164 (4.2) ResNet-164-L1BN-MT (4.3) ResNet-164-RReLU (4.4) ResNet-164-L1RReLU

Figure 4: Effect of RReLU on BN scaling parameters γl with ResNet164 on CIFAR10 dataset.

• With L1BN, many elements of γl converge in the range 0 < γ i
l ≤ 0.1

• With L1RReLU, these values tend towards higher magnitudes or concentrate around

values close to zero, indicating more flexibility with RReLU

11Liu, Zhuang, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. ”Learning efficient convolutional networks through network slimming.” In

Proceedings of the IEEE international conference on computer vision, pp. 2736-2744. 2017.

17



Contd.

Methods Baseline Pruning methods

Architecture ResNet-164 ResNet-164-L1BN-

MT (Liu et al.)12
ResNet-164-RReLU

(Proposed)

ResNet-164-L1RReLU

(Proposed)

Acc (with CIFAR10) 94.75 95.10 95.10 95.42

Filters pruned (%) – 44 13 45.34 48.41

Params in Mn(% saving) 1.71 1.22(28.65%) 0.92(46.2%) 0.83(51.5%)

FLOPs in Mn(% saving) 478 358(25.1%) 307(35.77%) 284(40.58%)

Table 3: Pruning capability of RReLU. Percentage values inside parentheses indicate corresponding

savings.

12Liu, Zhuang, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. ”Learning efficient convolutional networks through network slimming.” In

Proceedings of the IEEE international conference on computer vision, pp. 2736-2744. 2017.

13Liu et al. trained the ResNet164-L1BN model for 160 epochs, after which only 31% of the filters could be removed without any degradation in accuracy (94.8%), which resulted

in 19.3% saving in memory and 26.6% saving in FLOP.

18



Type of values (γl ,bl) take for ResNet-164-L1RReLU

(5.1) 8th residual block (5.2) 20th residual block (5.3) 36th residual block (5.4) 49th residual block

Figure 5: Plot of RReLU slopes (bl) along y-axis vs. BN parameters (γl) along x-axis in different

residual blocks of ResNet-164-L1RReLU.

• As regularization is applied to bl , it compels these parameters to adopt smaller values

• The term γlbl can take any value in the real line, as the elements of γl are not regularized

• With more depth, more number of filters could be pruned as more number of (bl ,γl) is

close to zero
19



Accuracy vs FLOP reduction

Figure 6: Acc vs FLOP reduction. The proposed methods (RReLU, L1RReLU) are compared with

L1BN and L1BN-MT (MT: more training). Different points are for models with different threshold

(chosen by cross-validation) for pruning bl .

20



RReLU as the coarse feature extractor

• Only the RReLU slopes bl are trained whereas the weights are fixed after Kaiming He

initialization 14

Dataset CIFAR-10 CIFAR-100

Architecture ResNet20 ResNet56 ResNet20 ResNet56

Acc ReLU (standard) 91.25 93.03 68.20 69.99

Acc (coarse feature extractor) 45.12 51.42 8.02 10.54

Table 4: RReLU extracts the coarse features with bl being only the trainable parameters.

14He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.” In Proceedings of the

IEEE international conference on computer vision, pp. 1026-1034. 2015.

21



Features choose the shortest filter-path length

Figure 7: Distribution of filter-path length for

WRN-40-4 with CIFAR-100.

• Only shorter paths carry gradients despite

using deeper architecture for Residual

networks15

• Features try to pass through a lesser number

of filters as well

• Metric: filter-path length (number of filters

the features pass through)

15Veit, Andreas, Michael J. Wilber, and Serge Belongie. ”Residual networks behave like ensembles of relatively shallow networks.” Advances in neural information processing

systems 29 (2016).

22



Applicability of Rotation to GELU activation

−4 −3 −2 −1 0 1 2 3
−4

−2

0

2

x

y

GELU, bl = 1

RGELU w/ bl ≥ 0

RGELU w/ bl < 0

Figure 8: Rotated GELU activation

σGELU(xl ; bl)

• Transformers exhibit improved performance

when employing GELU activations16

σGELU(x) = xP(X ≤ x) = xϕ(x)

= x .
1

2

[
1 + erf(

x√
2
)

]
.

• To introduce varying slopes in the GELU

activation, we propose RGELU, as follows:

hl+1 = σRGELU(xl ;bl) = blxl .
1

2

[
1 + erf(

xl√
2
)

]

16Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. ”Improving language understanding by generative pre-training.” (2018).

23



Scalable across larger dataset and various architectures

Arc Activation Filters ig-

nored (%)

Accuracy Params(Mn) Pruned FLOP(Mn) Pruned

VIT-s16-MLP GELU - 77.5 14.2 - 28.3 -

VIT-s16-MLP RGELU 6.32 80.1 13.2 6.32% 26.5 6.32%

WRN-50-2 ReLU - 76.682 21385.8 - 67.4 -

WRN-50-2 RReLU 25.34 76.58 18471.0 13.6% 55.2 18.1%

Table 5: Applying Rotation on ReLU and GELU activation with Imagenet dataset.

24



RReLU against adversarial attacks

• Considering a function f : X → RC as a neural network classifier with C classes,

Lipschitzness of f is closely related to its robustness

• Better adversarial robustness by imposing a tighter upper bound on the network’s local

Lipschitz constant (LLC) 17

• A function f : Rm → Rn is said to be Lipschitz continuous if ∀x, y ∈ Rm,

|f (x)− f (y)| ≤ Lp||x− y||q where Lp = sup{||∇f (x)||q : x ∈ Rm} is the Lipschitz

Constant (LC), ∇f (x) is gradient of function f (x), 1/p + 1/q = 1, 1 ≤ p and q ≤ ∞
• Many of the RReLU slopes tend to take smaller values than one, LLC of RReLU will be

smaller than LLC of ReLU

17Yang, Yao-Yuan, Cyrus Rashtchian, Hongyang Zhang, Russ R. Salakhutdinov, and Kamalika Chaudhuri. ”A closer look at accuracy vs. robustness.” Advances in neural

information processing systems 33 (2020): 8588-8601.

25



RReLU against adversarial attacks (contd.)

Architecture activation LLC18 Attack type Adv test acc

ResNet-20

ReLU 1.33
FGSM 34.11

PGD 38.20

RReLU 1.2
FGSM 39.84

PGD 42.46

ResNet-56

ReLU 1.41
FGSM 59.01

PGD 16.45

RReLU 1.30
FGSM 66.85

PGD 17.05

Table 6: RReLU to boost local smoothness and hence adversarial accuracy.

18Empirical computation of the Local Lipschitz Constant (LLC)

1

n

n∑
i=1

max

x
′
i
∈B∞(xi ,ϵ)

||f (xi ) − f (x′ i )||KL
||xi − x′ i ||∞

. (3)

26



Summary

• RReLU activation improves representation power corresponding to every filter

• It induces structural sparsity

• Scalable with bigger dataset like Imagenet and various architectures including Vision

Transformers with GELU activation

• It provides adversarial robustness

27



Publications

Related publication (Under review at TMLR)

1. Nayak, Nancy, and Sheetal Kalyani. ”Rotate the ReLU to implicitly sparsify deep networks.”

arXiv preprint arXiv:2206.00488 (2022).

28



Publications

Other accepted publications

1. Nayak, Nancy, Vishnu Raj, and Sheetal Kalyani. “Leveraging online learning for CSS in

frugal IoT network.” IEEE Transactions on Cognitive Communications and Networking 6,

no. 4 (2020): 1350-1364.

2. Vikas, Devannagari, Nancy Nayak, and Sheetal Kalyani. “Realizing neural decoder at the

edge with ensembled bnn.” IEEE Communications Letters 25, no. 10 (2021): 3315-3319.

3. Nayak, N., Raj, V. and Kalyani, S. “[Re] A comprehensive study on binary optimizer and its

applicability.” ReScience C: 6 pp. #9 (2).

4. Raj, Vishnu, Nancy Nayak, and Sheetal Kalyani. “Deep reinforcement learning based blind

mmwave MIMO beam alignment.” IEEE Transactions on Wireless Communications 21, no.

10 (2022): 8772-8785.

29



Publications

Publications under-review

1. (IEEE TWC) Nayak, Nancy, Sheetal Kalyani, and Himal A. Suraweera. “A DRL Approach

for RIS-Assisted Full-Duplex UL and DL Transmission: Beamforming, Phase Shift and Power

Optimization.” arXiv preprint arXiv:2212.13854 (2022).

2. (IEEE TCCN) Shankar, Nitin Priyadarshini, Deepsayan Sadhukhan, Nancy Nayak, and

Sheetal Kalyani. “Binarized ResNet: Enabling Automatic Modulation Classification at the

resource-constrained Edge.” arXiv preprint arXiv:2110.14357 (2021).

30



Publications

Pre-prints

1. Raj, Vishnu, Nancy Nayak, and Sheetal Kalyani. “Understanding learning dynamics of binary

neural networks via information bottleneck.” arXiv preprint arXiv:2006.07522 (2020).

2. Nayak, Nancy, Thulasi Tholeti, Muralikrishnan Srinivasan, and Sheetal Kalyani. “Green

DetNet: Computation and memory efficient DetNet using smart compression and training.”

arXiv preprint arXiv:2003.09446 (2020).

3. Sharma, Akshay, Nancy Nayak, and Sheetal Kalyani. “BayesAoA: A Bayesian method for

Computation Efficient Angle of Arrival Estimation.” arXiv preprint arXiv:2110.07992 (2021).

31



Thank you!

31



Structural sparsity with RReLU for CNN

Figure 9: RReLU in CNN.

• ⊗ denotes the convolution operation

• At the l th layer, four 2D features hl are

convolved with three set of filters denoted

by Wl with four sub-filters each, followed by

batchnorm and RReLU activation, resulting

in hl+1

• The first 2D feature (yellow) of hl+1 is

calculated by convolving each of the four 2D

features in hl with corresponding sub-filters

of the first filter (yellow) and adding them

32



Structural sparsity with RReLU for CNN

Figure 9: RReLU in CNN.

• After the training, if the slope b
{3}
l → 0,

then 3rd feature in hl+1 is close to zero

• Then the 3rd filter of Wl and the 3rd

sub-filter of every filter in Wl+1 can be

ignored (grey)

32



Structural sparsity with RReLU for CNN

Figure 9: RReLU in CNN.

• Wl ∈ Rcl+1×cl×k×k is the filter for the l th

layer of a 2D CNN

• cl and cl+1 represent the number of input

and output channels at the l th layer,

respectively

• k is the dimension of the filter

• The input and output for the l th layer are

hl ∈ Rcl×h̄wl ×h̄hl and hl+1 ∈ Rcl+1×h̄wl+1×h̄hl+1

respectively

• (h̄wl , h̄
h
l ) and (hwl+1, h

h
l+1) are spatial

dimensions (width, height) of the input and

the output respectively

32



Structural sparsity with RReLU for CNN

Figure 9: RReLU in CNN.

• The total number of multiplication for the

l th layer is clk
2h̄wl+1h̄

h
l+1cl+1

• The total number of addition for the l th

layer is (cl − 1) (k2 − 1)× h̄wl+1h̄
h
l+1cl+1

• The total count of FLOPs is the summation

of the number of multiplication and addition

≈ 2× the number of multiplication

= 2clk
2h̄wl+1h̄

h
l+1cl+1

32



Structural sparsity with RReLU for CNN

Figure 9: RReLU in CNN.

• If the output of RReLU at the l th layer has

cl+1 channels and n entries of bl are

insignificant, then only (cl+1 − n) channels

remain significant

• Saving Memory: Leads to saving

(cl+1 − n)clk
2 parameters for the l th layer

and cl+2(cl+1 − n)k2 parameters for the

(l + 1)th layer

• Saving Computation: FLOP is reduced to

2clk
2h̄wl+1h̄

h
l+1(cl+1 − n) and

2(cl+1 − n)k2h̄wl+2h̄
h
l+2cl+2 for the l th layer

and (l + 1)th layer respectively

32



ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Output of l th hidden layer

hl+1 = σ(F(hl ;Wl)) where σ is ReLU

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

σ
(x
)
=

m
ax
(0
,x
)

ReLU activation

33



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Increase the degree of freedom of ReLU by

rotating the linear part

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

b
m
ax
(0
,a
.x
)

a = +1, b ≥ 0

σ(x ; a, b) = bmax(0, a.x)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Increase the degree of freedom of ReLU by

rotating the linear part

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

b
m
ax
(0
,a
.x
)

a = +1, b < 0

σ(x ; a, b) = bmax(0, a.x)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Increase the degree of freedom of ReLU by

rotating the linear part

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

b
m
ax
(0
,a
.x
)

a = −1, b < 0

σ(x ; a, b) = bmax(0, a.x)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Increase the degree of freedom of ReLU by

rotating the linear part

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

b
m
ax
(0
,a
.x
)

a = −1, b ≥ 0

σ(x ; a, b) = bmax(0, a.x)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• The output of the l th layer is

hl+1 = σ(xl ; al ,bl) = bl max(0, al .xl),

where xl = F(hl ;Wl)

• Any value of al can be adjusted using the

weights/filters Wl

• Now, the output of the l th layer is

hl+1 = σ(xl ;bl) = bl max(0, xl)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Two different types of RReLU

corresponding to b ≥ 0 and b < 0 are

sufficient to learn

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

σ
(x
;b
)

RReLU activation σ(x ; b) = bmax(0, x)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

σ

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• Two different types of RReLU

corresponding to b ≥ 0 and b < 0 are

sufficient to learn

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

σ
(x
;b
)

RReLU activation σ(x ; b) = bmax(0, x)

34



Rotated ReLU in a DNN

Input

h0

W1 W2

b4

σ

σ

σ

σ

σ

σ

σ Output

h1 h2 hL

• W1 =


w11
1 w12

1 w13
1

w21
1 w22

1 w23
1

w31
1 w32

1 w33
1

w41
1 w42

1 w43
1

 and

W2 =


w11
2 w12

2 w13
2 w14

2

w21
2 w22

2 w23
2 w24

2

w31
2 w32

2 w33
2 w34

2

w41
2 w42

2 w43
2 w44

2


• Highlighted connections are unimportant if

b4 → 0

34



Exhaustive experiments

Data-sets

• MNIST

• CIFAR-10

• CIFAR-100

• SVHN

• Imagenet

Architectures

• FCNN

• ResNet-(20/56/110-

pre/164-pre)

• WideResNet-(40/16)-4

• WideResNet-50-2

• Vision Transformer s16

Compute facility

• For experiments with

Imagenet dataset:

NVIDIA-A100 GPU

• For others:

NVIDIA-GeForce 2080 Ti

GPU

35



Effect on the distribution of γl- proving better representation with RReLU

(10.1) ReLU, 200 epochs: 50

values of γl are close to zero.

(10.2) ReLU, 1200 epochs: 270

values of γl are close to zero.

Prolonged training facilitates

more pronounced adjustments of

γl , allowing for more filters to be

disregarded.

(10.3) RReLU, 1200 epochs: the

number of values of γl close to

zero increases to 400. The

sparsity further increases with

RReLU.

Figure 10: Distribution of batchnorm parameters γl after the training when the architecture

considered is ResNet56 on CIFAR-10 dataset. Subfig. (5.2) shows the effect of more training on γl .

Subfig. (c) is the same with RReLU.
36



How does RReLU provide compact model?

• Architectures with RReLU achieves the same performance as architectures with ReLU with

fewer trainable filters

• As x
{i}
l is batch normalized, it can take only bounded values

• If the value of b
{i}
l for i th feature, x

{i}
l is comparatively less, then the feature x

{i}
l is not

essential for the task and can be ignored keeping the performance intact

• We prune weights/filters based on the corresponding RReLU slopes in bl

37



RReLU against adversarial attacks (contd.)

• Adversarial attacks

• Fast Gradient Sign Method (FGSM)

xadv = x+ ϵSign(∇xJ(f (x), y)) (4)

• Projected Gradient Descent (PGD)

xadvi+1 = ProjBξ(x)

(
xadvi + η Sign

(
∇xadvi

J(f (xadvi ), y)
))

(5)

• Empirical computation of the Local Lipschitz Constant (LLC)

1

n

n∑
i=1

max
x
′
i ∈B∞(xi ,ϵ)

||f (xi )− f (x′i )||KL
||xi − x′i ||∞

. (6)

38


	Necessity for energy-efficient Deep Networks
	Rotated ReLU activation
	Intrinsic structural sparsity
	Insights on Results, Discussion, Scalability, and Robustness

