Peer-reviewed journal articles

  1. Suresh, J., Nayak, N., & Kalyani, S. (2025). First line of defense: A robust first layer mitigates adversarial attacks. https://arxiv.org/abs/2408.11680
  2. Nayak, N., Kalyani, S., & Suraweera, H. A. (2024). A DRL approach for RIS-assisted full-duplex UL and DL transmission: Beamforming, phase shift and power optimization. IEEE Transactions on Wireless Communications.
  3. Shankar, N. P., Sadhukhan, D., Nayak, N., Tholeti, T., Kalyani, S., & others. (2024). Binarized ResNet: enabling robust automatic modulation classification at the resource-constrained edge. IEEE Transactions on Cognitive Communications and Networking.
  4. Nayak, N., & Kalyani, S. (2024). Rotate the ReLU to Sparsify Deep Networks Implicitly. Transactions on Machine Learning Research. https://openreview.net/forum?id=Nzy0XmCPuZ
  5. Raj, V., Nayak, N., & Kalyani, S. (2022). Deep reinforcement learning based blind mmwave MIMO beam alignment. IEEE Transactions on Wireless Communications, 21(10), 8772–8785.
  6. Vikas, D., Nayak, N., & Kalyani, S. (2021). Realizing neural decoder at the edge with ensembled bnn. IEEE Communications Letters, 25(10), 3315–3319.
  7. Nayak, N., Raj, V., & Kalyani, S. (2020). A comprehensive study on binary optimizer and its applicability. ReScience C, 6(2). Accepted at NeurIPS 2019 Reproducibility Challenge.
  8. Nayak, N., Raj, V., & Kalyani, S. (2020). Leveraging online learning for CSS in frugal IoT network. IEEE Transactions on Cognitive Communications and Networking, 6(4), 1350–1364.

Under-review

  1. Nayak, N., Leung, K. K., & Hanzo, L. (2025). DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users. In arXiv preprint arXiv:2502.01278.
  2. Kumar, A. S., Nayak, N., Kalyani, S., & Suraweera, H. A. (2024). Energy Efficient Fair STAR-RIS for Mobile Users. https://arxiv.org/abs/2407.06868

Preprints

  1. Sharma, A., Nayak, N., & Kalyani, S. (2021). BayesAoA: A Bayesian method for Computation Efficient Angle of Arrival Estimation. In arXiv preprint arXiv:2110.07992.
  2. Nayak, N., Tholeti, T., Srinivasan, M., & Kalyani, S. (2020). Green detnet: Computation and memory efficient detnet using smart compression and training. In arXiv preprint arXiv:2003.09446.
  3. Nayak, N., Tholeti, T., Srinivasan, M., & Kalyani, S. (2020). What is the optimal depth for deep-unfolding architectures at deployment? In arXiv preprint arXiv:2003.09446.
  4. Raj, V., Nayak, N., & Kalyani, S. (2020). Understanding learning dynamics of binary neural networks via information bottleneck. In arXiv preprint arXiv:2006.07522.